Introduction to partitioning-based clustering methods with a robust example
Julkaistu sarjassa
Reports of the Department of Mathematical Information Technology. Series C, Software engineering and computational intelligencePäivämäärä
2006Julkaisija
University of JyväskyläISBN
951-39-2467-XISSN Hae Julkaisufoorumista
1456-4378Metadata
Näytä kaikki kuvailutiedotSamankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Clustering Incomplete Spectral Data with Robust Methods
Äyrämö, Sami; Pölönen, Ilkka; Eskelinen, Matti (International Society for Photogrammetry and Remote Sensing, 2017)Missing value imputation is a common approach for preprocessing incomplete data sets. In case of data clustering, imputation methods may cause unexpected bias because they may change the underlying structure of the data. ... -
Comparison of Internal Clustering Validation Indices for Prototype-Based Clustering
Hämäläinen, Joonas; Jauhiainen, Susanne; Kärkkäinen, Tommi (MDPI, 2017)Clustering is an unsupervised machine learning and pattern recognition method. In general, in addition to revealing hidden groups of similar observations and clusters, their number needs to be determined. Internal ... -
Paradigm of tunable clustering using Binarization of Consensus Partition Matrices (Bi-CoPaM) for gene discovery
Abu-Jamous, Basel; Fa, Rui; Roberts, David; Nandi, Asoke (Public Library of Science, 2013)Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem ... -
Space partitioning of exchange-correlation functionals with the projector augmented-wave method
Levämäki, H.; Kuisma, Mikael; Kokko, K. (AIP Publishing LLC, 2019)We implement a Becke fuzzy cells type space partitioning scheme for the purposes of exchange-correlation within the GPAW projector augmented-wave method based density functional theory code. Space partitioning is needed ... -
Feature Ranking of Large, Robust, and Weighted Clustering Result
Saarela, Mirka; Hämäläinen, Joonas; Kärkkäinen, Tommi (Springer International Publishing, 2017)A clustering result needs to be interpreted and evaluated for knowledge discovery. When clustered data represents a sample from a population with known sample-to-population alignment weights, both the clustering and the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.