Näytä suppeat kuvailutiedot

dc.contributor.authorNousiainen, Henri
dc.date.accessioned2013-09-05T18:05:08Z
dc.date.available2013-09-05T18:05:08Z
dc.date.issued2013
dc.identifier.otheroai:jykdok.linneanet.fi:1279312
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/42067
dc.description.abstractTämän tutkielman tarkoituksena on osoittaa, että jokaisella usean pelaajan yleisellä summapelillä on olemassa vähintään yksi Nashin tasapaino. Lisäksi osoitetaan, että kahden pelaajan nollasummapeleissä Nashin tasapainojen mukaiset pelaajien voittojen odotusarvojen suuruudet ovat yksikäsitteiset, ja näytetään kuinka kyseiset odotusarvot voidaan ratkaista lineaarisen optimoinnin avulla. Tutkielmassa määritellään yleiset summapelit kolmikkoina, jotka muodostuvat äärellisestä määrästä pelaajia, joista jokaiseen on liitetty äärellinen joukko. Näiden joukkojen alkioita kutsutaan pelaajien puhtaiksi strategioiksi. Kolmikon viimeisen jäsenen muodostaa jokaiselle pelaajalle erikseen määritelty kuvaus edellä mainittujen strategioiden joukosta reaalilukujoukkoon. Kyseinen kuvaus, eli hyötyfunktio, mallintaa pelaajan menestystä pelissä. Nollasummapeliksi peli määritellään silloin, kun häviäjät maksavat voittajille tietyn ennalta määrätyn määrän rahaa. Pelitapaa, jossa pelaajat valitsevat pelissä käytettävän strategian jollakin kiinnitetyllä todennäköisyydellä, sanotaan pelaajan sekastrategiaksi. Kaikkien sekastrategioiden muodostama joukko osoitetaan konveksiksi. Konveksisuutta hyväksikäyttäen todistetaan minimax-lause. Lauseen mukaan kahden pelaajan nollasummapeleissä pelaajien voitoilla on olemassa odotusarvoiset alarajat, jotka saavutetaan optimaalisiksi strategioiksi kutsuttujen sekastrategioiden avulla. Minimax-lauseen takaaman voiton alarajan sekä optimaalisten strategioiden selvittämiseksi käytetään simplex-algoritmia, jolla voidaan ratkaista lineaarisia optimointitehtäviä. Yleisissä summapeleissä optimaalisten strategioiden yleistyksien muodostamia pelaajien strategiajoukkoja kutsutaan Nashin tasapainoiksi. Toisin kuin kahden pelaajan nollasummapeleissä, yleisissä summapeleissä Nashin tasapainojen mukaiset voittojen odotusarvojen arvot eivät aina ole yksikäsitteiset. Brouwerin kiintopistelauseen avulla näytetään, että jokaisessa yleisessä summapelissä on oltava vähintään yksi Nashin tasapaino.fi
dc.format.extent1 verkkoaineisto.
dc.format.mimetypeapplication/pdf
dc.language.isofin
dc.rightsThis publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.en
dc.rightsJulkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.fi
dc.subject.otheralgoritmit
dc.subject.othermatematiikka
dc.subject.otherpeliteoria
dc.titleJohdatus peliteoriaan : kahden pelaajan nollasummapelien ratkaiseminen ja Nashin tasapainojen olemassaolo usean pelaajan yleisessä summapelissä
dc.identifier.urnURN:NBN:fi:jyu-201309052229
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.date.updated2013-09-05T18:05:08Z
dc.rights.accesslevelopenAccessfi
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi4041
dc.subject.ysoalgoritmit
dc.subject.ysomatematiikka
dc.subject.ysopeliteoria
dc.subject.ysolineaarinen optimointi
dc.subject.ysopelit
dc.format.contentfulltext
dc.type.okmG2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot