Feature selection in anomaly-based network intrusion detection systems
Tekijät
Päivämäärä
2010Pääsyrajoitukset
Aineistoon pääsyä on rajoitettu tekijänoikeussyistä. Aineisto on luettavissa Jyväskylän yliopiston kirjaston arkistotyöasemalta. Ks. https://kirjasto.jyu.fi/kokoelmat/arkistotyoasema.
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Unsupervised network intrusion detection systems for zero-day fast-spreading network attacks and botnets
Vahdani Amoli, Payam (University of Jyväskylä, 2015)Today, the occurrence of zero-day and complex attacks in high-speed networks is increasingly common due to the high number vulnerabilities in the cyber world. As a result, intrusions become more sophisticated and fast ... -
A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders
Penttilä, Jeremias (2017)Menetelmä poikkeavuuksien havaitsemiseen hyperspektrikuvista käyttäen syviä konvolutiivisia autoenkoodereita. Poikkeavuuksien havaitseminen kuvista, erityisesti hyperspektraalisista kuvista, on hankalaa. Kun ongelmaan ... -
Anomaly-based online intrusion detection system as a sensor for cyber security situational awareness system
Kokkonen, Tero (University of Jyväskylä, 2016)Almost all the organisations and even individuals rely on complex structures of data networks and networked computer systems. That complex data ensemble, the cyber domain, provides great opportunities, but at the same ... -
Combining conjunctive rule extraction with diffusion maps for network intrusion detection
Juvonen, Antti; Sipola, Tuomo (IEEE, 2013)Network security and intrusion detection are important in the modern world where communication happens via information networks. Traditional signature-based intrusion detection methods cannot find previously unknown ... -
A Network-Based Framework for Mobile Threat Detection
Kumar, Sanjay; Viinikainen, Ari; Hämäläinen, Timo (IEEE, 2018)Mobile malware attacks increased three folds in the past few years and continued to expand with the growing number of mobile users. Adversary uses a variety of evasion techniques to avoid detection by traditional systems, ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.