Approximation through interpolation in nonconvex multiobjective optimization
Julkaisija
University of JyväskyläISBN
978-951-39-4536-7ISSN Hae Julkaisufoorumista
1456-5390Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Väitöskirjat [3598]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Approximation method for computationally expensive nonconvex multiobjective optimization problems
Haanpää, Tomi (University of Jyväskylä, 2012) -
On solving computationally expensive multiobjective optimization problems with interactive methods
Ojalehto, Vesa (University of Jyväskylä, 2014) -
A survey on handling computationally expensive multiobjective optimization problems using surrogates: non-nature inspired methods
Tabatabaei, Mohammad; Hakanen, Jussi; Hartikainen, Markus; Miettinen, Kaisa; Sindhya, Karthik (Springer Berlin Heidelberg; International Society for Structural and Multidisciplinary Optimization, 2015)Computationally expensive multiobjective optimization problems arise, e.g. in many engineering applications, where several conflicting objectives are to be optimized simultaneously while satisfying constraints. In many ... -
Handling expensive multiobjective optimization problems with evolutionary algorithms
Chugh, Tinkle (University of Jyväskylä, 2017)Multiobjective optimization problems (MOPs) with a large number of conflicting objectives are often encountered in industry. Moreover, these problem typically involve expensive evaluations (e.g. time consuming simulations ... -
DESDEO: The Modular and Open Source Framework for Interactive Multiobjective Optimization
Misitano, Giovanni; Saini, Bhupinder Singh; Afsar, Bekir; Shavazipour, Babooshka; Miettinen Kaisa (Institute of Electrical and Electronics Engineers (IEEE), 2021)Interactive multiobjective optimization methods incorporate preferences from a human decision maker in the optimization process iteratively. This allows the decision maker to focus on a subset of solutions, learn about the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.