dc.contributor.author | Sindhya, Karthik | |
dc.contributor.author | Ruuska, Sauli | |
dc.contributor.author | Haanpää, Tomi | |
dc.contributor.author | Miettinen, Kaisa | |
dc.date.accessioned | 2011-10-13T05:08:38Z | |
dc.date.available | 2011-10-13T05:08:38Z | |
dc.date.issued | 2011 | |
dc.identifier.citation | Sindhya, K., Ruuska, S., Haanpää, T., & Miettinen, K. (2011). A New Hybrid Mutation Operator for Multiobjective Optimization with Differential Evolution. <i>Soft Computing</i>, <i>15</i>(10), 2041-2055. <a href="https://doi.org/10.1007/s00500-011-0704-5" target="_blank">https://doi.org/10.1007/s00500-011-0704-5</a> | |
dc.identifier.other | CONVID_20765463 | |
dc.identifier.other | TUTKAID_47218 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/36798 | |
dc.description.abstract | Differential evolution has become one of the most widely used evolution-
ary algorithms in multiobjective optimization. Its linear mutation operator is a sim-
ple and powerful mechanism to generate trial vectors. However, the performance
of the mutation operator can be improved by including a nonlinear part. In this pa-
per, we propose a new hybrid mutation operator consisting of a polynomial based
operator with nonlinear curve tracking capabilities and the differential evolution’s original mutation operator, to be efficiently able to handle various interdependencies
between decision variables. The resulting hybrid operator is straightforward
to implement and can be used within most evolutionary algorithms. Particularly,
it can be used as a replacement in all algorithms utilizing the original mutation
operator of differential evolution. We demonstrate how the new hybrid operator
can be used by incorporating it into MOEA/D, a winning evolutionary multiobjective
algorithm in a recent competition. The usefulness of the hybrid operator
is demonstrated with extensive numerical experiments showing improvements in
performance compared to the previous state of the art. | en |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Soft Computing | |
dc.relation.uri | http://www.springerlink.com/content/dh056511337w452r/ | |
dc.subject.other | Pareto-optimaalisuus | |
dc.subject.other | DE | |
dc.subject.other | MOEA/D | |
dc.subject.other | Evolutionary algorithms | |
dc.subject.other | Nonlinear | |
dc.subject.other | Multi-criteria optimization | |
dc.subject.other | Polynomial | |
dc.subject.other | Pareto optimality | |
dc.title | A New Hybrid Mutation Operator for Multiobjective Optimization with Differential Evolution | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-2011101211532 | |
dc.contributor.laitos | Tietotekniikan laitos | fi |
dc.contributor.laitos | Department of Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2011-10-12T07:02:30Z | |
dc.contributor.publisher | Springer | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 2041-2055 | |
dc.relation.issn | 1432-7643 | |
dc.relation.numberinseries | 10 | |
dc.relation.volume | 15 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © Springer. This is an electronic final draft version of an article whose final and definitive form has been published in the Soft Computing published by Springer. | en |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | monitavoiteoptimointi | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p32016 | |
dc.relation.doi | 10.1007/s00500-011-0704-5 | |
dc.type.okm | A1 | |