PAINT: Pareto front interpolation for nonlinear multiobjective optimization
Hartikainen, M., Miettinen, K., & Wiecek, M. M. (2012). PAINT: Pareto front interpolation for nonlinear multiobjective optimization. Computational Optimization and Applications, 52(3), 845-867. https://doi.org/10.1007/s10589-011-9441-z
Julkaistu sarjassa
Computational Optimization and ApplicationsPäivämäärä
2012Tekijänoikeudet
© Springer International Publishing AG
A method called PAINT is introduced for computationally expensive multiobjective optimization problems. The method interpolates between a given set of Pareto optimal outcomes. The interpolation provided by the PAINT method implies a mixed integer linear surrogate problem for the original problem which can be optimized with any interactive method to make decisions concerning the original problem. When the scalarizations of the interactive method used do not introduce nonlinearity to the problem (which is true e.g., for the synchronous NIMBUS method), the scalarizations of the surrogate problem can be optimized with available mixed integer linear solvers. Thus, the use of the interactive method is fast with the surrogate problem even though the problem is computationally expensive. Numerical examples of applying the PAINT method for interpolation are included.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0926-6003Asiasanat
Alkuperäislähde
http://www.springerlink.com/content/x8548782129x3832/?MUD=MPJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/21564912
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A New Hybrid Mutation Operator for Multiobjective Optimization with Differential Evolution
Sindhya, Karthik; Ruuska, Sauli; Haanpää, Tomi; Miettinen, Kaisa (Springer, 2011)Differential evolution has become one of the most widely used evolution- ary algorithms in multiobjective optimization. Its linear mutation operator is a sim- ple and powerful mechanism to generate trial vectors. However, ... -
DESDEO: The Modular and Open Source Framework for Interactive Multiobjective Optimization
Misitano, Giovanni; Saini, Bhupinder Singh; Afsar, Bekir; Shavazipour, Babooshka; Miettinen Kaisa (Institute of Electrical and Electronics Engineers (IEEE), 2021)Interactive multiobjective optimization methods incorporate preferences from a human decision maker in the optimization process iteratively. This allows the decision maker to focus on a subset of solutions, learn about the ... -
Approximation method for computationally expensive nonconvex multiobjective optimization problems
Haanpää, Tomi (University of Jyväskylä, 2012) -
Why Use Interactive Multi-Objective Optimization in Chemical Process Design?
Miettinen, Kaisa; Hakanen, Jussi (World Scientific, 2009)Problems in chemical engineering, like most real-world optimization problems, typically, have several conflicting performance criteria or objectives and they often are computationally demanding, which sets special requirements ... -
Why Use Interactive Multi-Objective Optimization in Chemical Process Design?
Miettinen, Kaisa; Hakanen, Jussi (World Scientific, 2017)Problems in chemical engineering, like most real-world optimization problems, typically, have several conflicting performance criteria or objectives and they often are computationally demanding, which sets special requirements ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.