University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Audio based genre classification of electronic music

Thumbnail
View/Open
945.7Kb

Downloads:  
Show download detailsHide download details  
Authors
Kirss, Priit
Date
2007
Discipline
Music, Mind and Technology (maisteriohjelma)Master's Degree Programme in Music, Mind and Technology

 
Keywords
Music Information Retrieval MIR
URI

http://urn.fi/URN:NBN:fi:jyu-2007601

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [23396]

Related items

Showing items with similar title or keywords.

  • Developing and testing sub-band spectral features in music genre and music mood machine learning 

    Prezja, Fabi (2018)
    In the field of artificial intelligence, supervised machine learning enables us to try to develop automatic recognition systems. In music information retrieval, training and testing such systems is possible with a variety ...
  • Testing a spectral-based feature set for audio genre classification 

    Hartmann, Martín Ariel (2011)
    Automatic musical genre classification is an important information retrieval task since it can be applied for practical purposes such as the organization of data collections in the digital music industry. However, this ...
  • Component search in a metaCASE environment 

    Äijänen, Matti (2001)
  • Discovering Business Processes from Unstructured Text 

    Pietikäinen, Sampo (2020)
    Asiakirjojen käsittely manuaalisesti kuluttaa paljon tietotyöntekijän resursseja. Tämä koskee myös liiketoimintaprossien johtamisen asiantuntijoita, joiden työ voi vaatia useiden liiketoimintaprosessien kuvausten lukemista. ...
  • Exploring Frequency-Dependent Brain Networks from Ongoing EEG Using Spatial ICA During Music Listening 

    Zhu, Yongjie; Zhang, Chi; Poikonen, Hanna; Toiviainen, Petri; Huotilainen, Minna; Mathiak, Klaus; Ristaniemi, Tapani; Cong, Fengyu (Springer, 2020)
    Recently, exploring brain activity based on functional networks during naturalistic stimuli especially music and video represents an attractive challenge because of the low signal-to-noise ratio in collected brain data. ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre