Testing a spectral-based feature set for audio genre classification
Tekijät
Päivämäärä
2011Automatic musical genre classification is an important information retrieval task since it can be applied for practical purposes such as the organization of data collections in the digital music industry. However, this task remains an open question because the current state of the art shows far from satisfactory outcomes in terms of classification performance. Moreover, the most common algorithms that are used for this task are not designed for modelling music perception. This study suggests a framework for testing different musical features for use in music genre classification and evaluates the performance of this task based on two musical descriptors.
The focus of this study is on automatic classification of music into genres based on audio content. The performance of two sets of timbral descriptors, namely the sub-band fluxes and the mel-frequency cepstral coefficients, is compared. The choice of these particular descriptors is based on their ease or difficulty of interpretation from a perceptual point of view. Classification performance is determined by using a variety of music datasets, learning algorithms, feature selection approaches and combinatorial feature subsets yielded from these descriptors. The results were estimated upon overall classification accuracies, generalization capability, and relevance of these musical descriptors based on feature ranking.
According to the results, the sub-band fluxes, perceptually motivated descriptors of polyphonic timbre, performed better than the widely used mel-frequency cepstral coefficients. The former timbral descriptors showed better classification accuracies and lower tendency to overfit than the latter.
In a nutshell, this study gives support to using perceptually interpretable timbre desciptors for musical genre classification tasks and suggests the utilization of the sub-band flux set for further content-based tasks in the field of music information retrieval.
...
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29537]
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Developing and testing sub-band spectral features in music genre and music mood machine learning
Prezja, Fabi (2018)In the field of artificial intelligence, supervised machine learning enables us to try to develop automatic recognition systems. In music information retrieval, training and testing such systems is possible with a variety ... -
Feature selection for classification of music according to expressed emotion
Saari, Pasi (2009) -
The influence of rhythmic and spectro-timbral musical features on gait-related movement
Johnson, Susan (2017)Music makes us move, and humans have the universal tendency to synchronise their movements to music. This phenomenon has been used in music therapy to help people with movement disorders regain control over their movements. ... -
Unstable feature relevance in classification tasks
Skrypnyk, Iryna (University of Jyväskylä, 2011) -
Comparison of feature importance measures as explanations for classification models
Saarela, Mirka; Jauhiainen, Susanne (Springer, 2021)Explainable artificial intelligence is an emerging research direction helping the user or developer of machine learning models understand why models behave the way they do. The most popular explanation technique is feature ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.