dc.contributor.author | Rahman, Anis Ur | |
dc.contributor.author | Tikhonov, Gleb | |
dc.contributor.author | Oksanen, Jari | |
dc.contributor.author | Rossi, Tuomas | |
dc.contributor.author | Ovaskainen, Otso | |
dc.date.accessioned | 2024-12-10T10:38:48Z | |
dc.date.available | 2024-12-10T10:38:48Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Rahman, A. U., Tikhonov, G., Oksanen, J., Rossi, T., & Ovaskainen, O. (2024). Accelerating joint species distribution modelling with Hmsc-HPC by GPU porting. <i>PLoS Computational Biology</i>, <i>20</i>(9), Article e1011914. <a href="https://doi.org/10.1371/journal.pcbi.1011914" target="_blank">https://doi.org/10.1371/journal.pcbi.1011914</a> | |
dc.identifier.other | CONVID_242626920 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/98901 | |
dc.description.abstract | Joint species distribution modelling (JSDM) is a widely used statistical method that analyzes combined patterns of all species in a community, linking empirical data to ecological theory and enhancing community-wide prediction tasks. However, fitting JSDMs to large datasets is often computationally demanding and time-consuming. Recent studies have introduced new statistical and machine learning techniques to provide more scalable fitting algorithms, but extending these to complex JSDM structures that account for spatial dependencies or multi-level sampling designs remains challenging. In this study, we aim to enhance JSDM scalability by leveraging high-performance computing (HPC) resources for an existing fitting method. Our work focuses on the Hmsc R-package, a widely used JSDM framework that supports the integration of various dataset types into a single comprehensive model. We developed a GPU-compatible implementation of its model-fitting algorithm using Python and the TensorFlow library. Despite these changes, our enhanced framework retains the original user interface of the Hmsc R-package. We evaluated the performance of the proposed implementation across various model configurations and dataset sizes. Our results show a significant increase in model fitting speed for most models compared to the baseline Hmsc R-package. For the largest datasets, we achieved speed-ups of over 1000 times, demonstrating the substantial potential of GPU porting for previously CPU-bound JSDM software. This advancement opens promising opportunities for better utilizing the rapidly accumulating new biodiversity data resources for inference and prediction. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Public Library of Science (PLoS) | |
dc.relation.ispartofseries | PLoS Computational Biology | |
dc.rights | CC BY 4.0 | |
dc.subject.other | phylogenetics | |
dc.subject.other | community ecology | |
dc.subject.other | machine learning algorithms | |
dc.subject.other | linear algebra | |
dc.subject.other | programming languages | |
dc.subject.other | species diversity | |
dc.subject.other | statistical distributions | |
dc.subject.other | taxonomy | |
dc.title | Accelerating joint species distribution modelling with Hmsc-HPC by GPU porting | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202412107715 | |
dc.contributor.laitos | Bio- ja ympäristötieteiden laitos | fi |
dc.contributor.laitos | Department of Biological and Environmental Science | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 1553-7358 | |
dc.relation.numberinseries | 9 | |
dc.relation.volume | 20 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 Rahman et al. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 336212 | |
dc.relation.grantnumber | 856506 | |
dc.relation.grantnumber | 856506 | |
dc.relation.grantnumber | 101057437 | |
dc.relation.grantnumber | 345110 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/856506/EU//LIFEPLAN | |
dc.subject.yso | jakaumat | |
dc.subject.yso | algoritmit | |
dc.subject.yso | fylogenetiikka | |
dc.subject.yso | lineaarialgebra | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | ohjelmointikielet | |
dc.subject.yso | monimuotoisuus | |
dc.subject.yso | ekologia | |
dc.subject.yso | systematiikka (biologia) | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7185 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14524 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28207 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16733 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p162 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14084 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p634 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p19946 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1371/journal.pcbi.1011914 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | European Commission | en |
dc.relation.funder | European Commission | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Research post as Academy Professor, AoF | en |
jyx.fundingprogram | ERC European Research Council, H2020 | en |
jyx.fundingprogram | Research infrastructures, HE | en |
jyx.fundingprogram | Research costs of Academy Professor, AoF | en |
jyx.fundingprogram | Akatemiaprofessorin tehtävä, SA | fi |
jyx.fundingprogram | ERC European Research Council, H2020 | fi |
jyx.fundingprogram | Research infrastructures, HE | fi |
jyx.fundingprogram | Akatemiaprofessorin tutkimuskulut, SA | fi |
jyx.fundinginformation | This project was funded by the Academy of Finland (grant no. 336212 and 345110) to OO, and the European Union: the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 856506 to OO; ERC-synergy project LIFEPLAN) and the HORIZON-INFRA-2021-TECH01 project 101057437 (Biodiversity Digital Twin for Advanced Modelling, Simulation and Prediction Capabilities) to OO. | |
dc.type.okm | A1 | |