Show simple item record

dc.contributor.authorRahman, Anis Ur
dc.contributor.authorTikhonov, Gleb
dc.contributor.authorOksanen, Jari
dc.contributor.authorRossi, Tuomas
dc.contributor.authorOvaskainen, Otso
dc.date.accessioned2024-12-10T10:38:48Z
dc.date.available2024-12-10T10:38:48Z
dc.date.issued2024
dc.identifier.citationRahman, A. U., Tikhonov, G., Oksanen, J., Rossi, T., & Ovaskainen, O. (2024). Accelerating joint species distribution modelling with Hmsc-HPC by GPU porting. <i>PLoS Computational Biology</i>, <i>20</i>(9), Article e1011914. <a href="https://doi.org/10.1371/journal.pcbi.1011914" target="_blank">https://doi.org/10.1371/journal.pcbi.1011914</a>
dc.identifier.otherCONVID_242626920
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/98901
dc.description.abstractJoint species distribution modelling (JSDM) is a widely used statistical method that analyzes combined patterns of all species in a community, linking empirical data to ecological theory and enhancing community-wide prediction tasks. However, fitting JSDMs to large datasets is often computationally demanding and time-consuming. Recent studies have introduced new statistical and machine learning techniques to provide more scalable fitting algorithms, but extending these to complex JSDM structures that account for spatial dependencies or multi-level sampling designs remains challenging. In this study, we aim to enhance JSDM scalability by leveraging high-performance computing (HPC) resources for an existing fitting method. Our work focuses on the Hmsc R-package, a widely used JSDM framework that supports the integration of various dataset types into a single comprehensive model. We developed a GPU-compatible implementation of its model-fitting algorithm using Python and the TensorFlow library. Despite these changes, our enhanced framework retains the original user interface of the Hmsc R-package. We evaluated the performance of the proposed implementation across various model configurations and dataset sizes. Our results show a significant increase in model fitting speed for most models compared to the baseline Hmsc R-package. For the largest datasets, we achieved speed-ups of over 1000 times, demonstrating the substantial potential of GPU porting for previously CPU-bound JSDM software. This advancement opens promising opportunities for better utilizing the rapidly accumulating new biodiversity data resources for inference and prediction.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherPublic Library of Science (PLoS)
dc.relation.ispartofseriesPLoS Computational Biology
dc.rightsCC BY 4.0
dc.subject.otherphylogenetics
dc.subject.othercommunity ecology
dc.subject.othermachine learning algorithms
dc.subject.otherlinear algebra
dc.subject.otherprogramming languages
dc.subject.otherspecies diversity
dc.subject.otherstatistical distributions
dc.subject.othertaxonomy
dc.titleAccelerating joint species distribution modelling with Hmsc-HPC by GPU porting
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202412107715
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1553-7358
dc.relation.numberinseries9
dc.relation.volume20
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 Rahman et al.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber336212
dc.relation.grantnumber856506
dc.relation.grantnumber856506
dc.relation.grantnumber101057437
dc.relation.grantnumber345110
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/856506/EU//LIFEPLAN
dc.subject.ysojakaumat
dc.subject.ysoalgoritmit
dc.subject.ysofylogenetiikka
dc.subject.ysolineaarialgebra
dc.subject.ysokoneoppiminen
dc.subject.ysoohjelmointikielet
dc.subject.ysomonimuotoisuus
dc.subject.ysoekologia
dc.subject.ysosystematiikka (biologia)
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p7185
jyx.subject.urihttp://www.yso.fi/onto/yso/p14524
jyx.subject.urihttp://www.yso.fi/onto/yso/p28207
jyx.subject.urihttp://www.yso.fi/onto/yso/p16733
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p162
jyx.subject.urihttp://www.yso.fi/onto/yso/p14084
jyx.subject.urihttp://www.yso.fi/onto/yso/p634
jyx.subject.urihttp://www.yso.fi/onto/yso/p19946
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1371/journal.pcbi.1011914
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuropean Commissionen
dc.relation.funderEuropean Commissionen
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramResearch post as Academy Professor, AoFen
jyx.fundingprogramERC European Research Council, H2020en
jyx.fundingprogramResearch infrastructures, HEen
jyx.fundingprogramResearch costs of Academy Professor, AoFen
jyx.fundingprogramAkatemiaprofessorin tehtävä, SAfi
jyx.fundingprogramERC European Research Council, H2020fi
jyx.fundingprogramResearch infrastructures, HEfi
jyx.fundingprogramAkatemiaprofessorin tutkimuskulut, SAfi
jyx.fundinginformationThis project was funded by the Academy of Finland (grant no. 336212 and 345110) to OO, and the European Union: the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 856506 to OO; ERC-synergy project LIFEPLAN) and the HORIZON-INFRA-2021-TECH01 project 101057437 (Biodiversity Digital Twin for Advanced Modelling, Simulation and Prediction Capabilities) to OO.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0