dc.contributor.author | Wesselkamp, Marieke | |
dc.contributor.author | Moser, Niklas | |
dc.contributor.author | Kalweit, Maria | |
dc.contributor.author | Boedecker, Joschka | |
dc.contributor.author | Dormann, Carsten F. | |
dc.date.accessioned | 2024-12-05T09:56:22Z | |
dc.date.available | 2024-12-05T09:56:22Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Wesselkamp, M., Moser, N., Kalweit, M., Boedecker, J., & Dormann, C. F. (2024). Process‐Informed Neural Networks : A Hybrid Modelling Approach to Improve Predictive Performance and Inference of Neural Networks in Ecology and Beyond. <i>Ecology Letters</i>, <i>27</i>(11), Article e70012. <a href="https://doi.org/10.1111/ele.70012" target="_blank">https://doi.org/10.1111/ele.70012</a> | |
dc.identifier.other | CONVID_244355029 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/98835 | |
dc.description.abstract | Despite deep learning being state of the art for data-driven model predictions, its application in ecology is currently subject to two important constraints: (i) deep-learning methods are powerful in data-rich regimes, but in ecology data are typically sparse; and (ii) deep-learning models are black-box methods and inferring the processes they represent are non-trivial to elicit. Process-based (= mechanistic) models are not constrained by data sparsity or unclear processes and are thus important for building up our ecological knowledge and transfer to applications. In this work, we combine process-based models and neural networks into process-informed neural networks (PINNs), which incorporate the process knowledge directly into the neural network structure. In a systematic evaluation of spatial and temporal prediction tasks for C-fluxes in temperate forests, we show the ability of five different types of PINNs (i) to outperform process-based models and neural networks, especially in data-sparse regimes with high-transfer task and (ii) to inform on mis- or undetected processes. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Wiley | |
dc.relation.ispartofseries | Ecology Letters | |
dc.rights | CC BY 4.0 | |
dc.subject.other | deep learning | |
dc.subject.other | environmental prediction | |
dc.subject.other | explainable AI | |
dc.subject.other | inference | |
dc.subject.other | neural network | |
dc.subject.other | physics-informed | |
dc.subject.other | prediction | |
dc.subject.other | process model | |
dc.subject.other | process-informed | |
dc.subject.other | transferability | |
dc.title | Process‐Informed Neural Networks : A Hybrid Modelling Approach to Improve Predictive Performance and Inference of Neural Networks in Ecology and Beyond | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202412057651 | |
dc.contributor.laitos | Bio- ja ympäristötieteiden laitos | fi |
dc.contributor.laitos | Department of Biological and Environmental Science | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 1461-023X | |
dc.relation.numberinseries | 11 | |
dc.relation.volume | 27 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 345110 | |
dc.subject.yso | neuroverkot | |
dc.subject.yso | ekologia | |
dc.subject.yso | ympäristöekologia | |
dc.subject.yso | syväoppiminen | |
dc.subject.yso | ekosysteemit (ekologia) | |
dc.subject.yso | ennusteet | |
dc.subject.yso | mallintaminen | |
dc.subject.yso | tekoäly | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7292 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p634 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p25399 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p39324 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4997 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3297 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3533 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2616 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1111/ele.70012 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Research costs of Academy Professor, AoF | en |
jyx.fundingprogram | Akatemiaprofessorin tutkimuskulut, SA | fi |
jyx.fundinginformation | This work was supported by Research Council of Finland, Grant 345110, Deutsche Forschungsgemeinschaft, SFB 1537 Ecosense, SFB 1597 SmallData. | |
dc.type.okm | A1 | |