Näytä suppeat kuvailutiedot

dc.contributor.authorWesselkamp, Marieke
dc.contributor.authorMoser, Niklas
dc.contributor.authorKalweit, Maria
dc.contributor.authorBoedecker, Joschka
dc.contributor.authorDormann, Carsten F.
dc.date.accessioned2024-12-05T09:56:22Z
dc.date.available2024-12-05T09:56:22Z
dc.date.issued2024
dc.identifier.citationWesselkamp, M., Moser, N., Kalweit, M., Boedecker, J., & Dormann, C. F. (2024). Process‐Informed Neural Networks : A Hybrid Modelling Approach to Improve Predictive Performance and Inference of Neural Networks in Ecology and Beyond. <i>Ecology Letters</i>, <i>27</i>(11), Article e70012. <a href="https://doi.org/10.1111/ele.70012" target="_blank">https://doi.org/10.1111/ele.70012</a>
dc.identifier.otherCONVID_244355029
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/98835
dc.description.abstractDespite deep learning being state of the art for data-driven model predictions, its application in ecology is currently subject to two important constraints: (i) deep-learning methods are powerful in data-rich regimes, but in ecology data are typically sparse; and (ii) deep-learning models are black-box methods and inferring the processes they represent are non-trivial to elicit. Process-based (= mechanistic) models are not constrained by data sparsity or unclear processes and are thus important for building up our ecological knowledge and transfer to applications. In this work, we combine process-based models and neural networks into process-informed neural networks (PINNs), which incorporate the process knowledge directly into the neural network structure. In a systematic evaluation of spatial and temporal prediction tasks for C-fluxes in temperate forests, we show the ability of five different types of PINNs (i) to outperform process-based models and neural networks, especially in data-sparse regimes with high-transfer task and (ii) to inform on mis- or undetected processes.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofseriesEcology Letters
dc.rightsCC BY 4.0
dc.subject.otherdeep learning
dc.subject.otherenvironmental prediction
dc.subject.otherexplainable AI
dc.subject.otherinference
dc.subject.otherneural network
dc.subject.otherphysics-informed
dc.subject.otherprediction
dc.subject.otherprocess model
dc.subject.otherprocess-informed
dc.subject.othertransferability
dc.titleProcess‐Informed Neural Networks : A Hybrid Modelling Approach to Improve Predictive Performance and Inference of Neural Networks in Ecology and Beyond
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202412057651
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1461-023X
dc.relation.numberinseries11
dc.relation.volume27
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber345110
dc.subject.ysoneuroverkot
dc.subject.ysoekologia
dc.subject.ysoympäristöekologia
dc.subject.ysosyväoppiminen
dc.subject.ysoekosysteemit (ekologia)
dc.subject.ysoennusteet
dc.subject.ysomallintaminen
dc.subject.ysotekoäly
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p634
jyx.subject.urihttp://www.yso.fi/onto/yso/p25399
jyx.subject.urihttp://www.yso.fi/onto/yso/p39324
jyx.subject.urihttp://www.yso.fi/onto/yso/p4997
jyx.subject.urihttp://www.yso.fi/onto/yso/p3297
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
jyx.subject.urihttp://www.yso.fi/onto/yso/p2616
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1111/ele.70012
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramResearch costs of Academy Professor, AoFen
jyx.fundingprogramAkatemiaprofessorin tutkimuskulut, SAfi
jyx.fundinginformationThis work was supported by Research Council of Finland, Grant 345110, Deutsche Forschungsgemeinschaft, SFB 1537 Ecosense, SFB 1597 SmallData.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0