Recovery and separation of rare earth elements by utilizing α-aminophosphonic acids as precipitants and adsorbents
Harvinaisia maametalleja (Rare earth element, REE) hyödynnetään useissa nykyteknologian sovelluksissa ja uusiutuvan energian tuotannossa. Etenkin vihreiden teknologioiden lisääntyessä myös tarve REE:lle kasvaa tulevaisuudessa ja siten niiden tehokas talteenotto sekä niiden mineraaleista että jätevirroista tulee olemaan entistä tärkeämpää jatkossa. Etenkin viime vuosikymmenen aikana aminofosfonaattien on tutkittu olevan hyviä neste-nesteuuttoreagensseja ja adsorbenttejä REE:n talteenottamiseksi. REE:lle α-aminofosfonaatteja ei ole kuitenkaan vielä tutkittu sakkautusreagensseina. Tässä väitöskirjatyössä tutkimme α-aminofosfonaatteja ensin sakkautusreagensseina REE:n lisäksi samoissa mineraaleissa esiintyville Th:lle ja U:lle pH:n funktiona. pH 1:ssä havaittiin Sc, Th, ja U sakkautuvan tehokkaasti, kun taas REE:t sakkautuivat tehokkaammin pH 4:ssä. Vierekkäisten elementtien erottaminen oli kuitenkin tehotonta. Seuraavaksi itsesyntetisoitua α-aminofosfonaattia hyödynnettiin additiivinä 3D printatuissa suodattimissa, joita tutkittiin REE:n talteenottamiseksi happamista kaivosjätevesistä. REE:n (Sc, Y, Nd, Dy) talteenottoon pH 2 osoittautui parhaaksi, sillä suurin osa kaivosveden muista alkuaineista (Co, Cu, Al, Ca, K, Zn) ei adsorboitunut tässä pH:ssa. REE:n osuutta saatiin siten liuoksessa konsentroitua 8,3 prosentista 69,9 prosenttiin. Viimeisenä tutkittiin erotteluprosessia, jossa REE:t, B, Al, Fe, Co ja Cu talteenotetaan neodyymimagneeteista. Prosessissa yhdistettiin liuotus, sakkautus ja kiinteäfaasiuutto käyttäen 3D printattuja suodattimia, joissa adsorboivana aineena toimi kaupallinen α-aminofosfonaattia sisältävä ioninvaihtohartsi Lewatit TP260. 3D printattujen suodattimien kiinteäfaasiuutossa käytettiin eluentteina ympäristöystävällistä metaanisulfonihappoa, ammoniumkloridia ja kaliumoksalaattia. Erotusprosessilla Fe ja REE:t saatiin 97,6% ja 99,4% puhtaisiin fraktioihin. Muut alkuaineet saatiin omiin vähemmän monimutkaisiin fraktioihinsa. Tässä väitöskirjassa esitetty työ tuo uutta tietoa REE:n ja muiden kriittisten alkuaineiden erotteluun käyttäen joko sakkautus- tai adsorptiomenetelmää. Lisäksi α-aminofosfonaattien käyttämistä REE:n, Th ja U:n sakkauttamiseen tutkittiin ensimmäistä kertaa.
...
Rare earth elements (REE) are essential elements in various modern technological applications and renewable energy production. As the world shifts towards greener technologies, the consumption of REEs is expected to rise. Therefore, their efficient separation from each other, as well as recovery from their minerals and waste streams, will be of great importance. During the past decade, aminophosphonates have attracted attention as extracting agents in liquid-liquid extraction and as adsorbents for REE separation and recovery. Their ability to act as precipitation agents, however, has yet to be studied. In this dissertation, the α-aminophosphonates were first investigated as precipitation agents for REEs and Th and U, which are present in the same ores. The precipitation agents were found to efficiently precipitate Sc, Th, and U at pH 1, whereas other REEs precipitated around pH 4. The separation between adjacent REEs was low. Second, the self-synthetized α-aminophosphonate was utilized as an additive in 3D-printed filters to recover REEs from mining wastewater. The recovery of REEs (Sc, Y, Nd, Dy) from the mining wastewater was the most effective at pH 2, as the adsorption of most non-target elements (Co, Cu, Al, Ca, K, Zn) was small. Overall, the developed recovery process for REEs yielded a final eluate containing 69.9% of REEs, a clear improvement over the initial concentration of 8.3%. Third, the separation process for separating REEs, B, Al, Fe, Co, and Cu from NdFeB magnets was developed by combining methanesulfonic acid (MSA) leaching, precipitation, and solid-phase extraction. In the solid-phase extraction step ecofriendly MSA, ammonium chloride and potassium oxalate were utilized as eluents and 3D-printed filters containing commercial α-aminophosphonate ion-exchanger (Lewatit TP260) as an adsorbent. With the developed separation process Fe and REEs were recovered with 97.6% and 99.4% purity, respectively. Furthermore, the other elements were separated into less complex fractions. The work presented in this dissertation provides new separation methods for REEs and other critical elements utilizing both precipitation and solid-phase extraction methods. Additionally, this dissertation contributes new information on separating REEs, Th, and U using α-aminophosphonic acid precipitants, which had yet to be investigated.
...
Publisher
Jyväskylän yliopistoISBN
978-952-86-0432-7ISSN Search the Publication Forum
2489-9003Contains publications
- Artikkeli I: Virtanen, E. J., Perämäki, S., Helttunen, K., Väisänen, A., & Moilanen, J. O. (2021). Alkyl-Substituted Aminobis(phosphonates) : Efficient Precipitating Agents for Rare Earth Elements, Thorium, and Uranium in Aqueous Solutions. ACS Omega, 6(37), 23977-23987. DOI: 10.1021/acsomega.1c02982
- Artikkeli II: Virtanen, E. J., Kukkonen, E., Yliharju, J., Tuomisto, M., Frimodig, J., Kinnunen, K., Lahtinen, E., Hänninen, M. M., Väisänen, A., Haukka, M., & Moilanen, J. O. (2025). Recovery of rare earth elements from mining wastewater with aminomethylphosphonic acid functionalized 3D-printed filters. Separation and Purification Technology, 353, Article 128599. DOI: 10.1016/j.seppur.2024.128599
- Artikkeli III: Virtanen, E. J., Yliharju, J., Kukkonen, E., Christiansen, T., Tuomisto, M., Miettinen, A., Väisänen, A., Moilanen J. O., Separating critical elements from NdFeB magnets with aminophosphonic acid functionalised 3D printed filters and their detailed structural characterisation with X-ray tomography. Manuscript.
Metadata
Show full item recordCollections
- JYU Dissertations [870]
- Väitöskirjat [3599]
License
Related items
Showing items with similar title or keywords.
-
Method development for determination and recovery of rare earth elements from industrial fly ash
Perämäki, Siiri (University of Jyväskylä, 2014)Rare earth elements (REE) are important in numerous high technology applications and in addition their supply risk is high, which gives rise to studying new sources for rare earth elements. Rare earth element concentrations ... -
Selective recovery of phosphorus as AlPO4 from silicon-free CFB-derived fly ash leachate
Budhathoki, Roshan; Väisänen, Ari; Lahtinen, Manu (Elsevier BV, 2018)The prospect of phosphorus (P) recovery from siliceous fly ash was investigated. The phosphorus content in the pristine fly ash was 1.21%. Obtaining pure phosphorus products from fly ash is very challenging because of high ... -
RAVITA Technology : new innovation for combined phosphorus and nitrogen recovery
Rossi, Laura; Reuna, Sini; Fred, Tommi; Heinonen, Mari (IWA Publishing, 2018) -
Lignin recovery from spent alkaline pulping liquors using acidification, membrane separation, and related processing steps : A Review
Hubbe, Martin A.; Alén, Raimo; Paleologou, Michael; Kannangara, Miyuru; Kihlman, Jonas (North Carolina State University, 2019)The separation of lignin from the black liquor generated during alkaline pulping is reviewed in this article with an emphasis on chemistry. Based on published accounts, the precipitation of lignin from spent pulping liquor ... -
Alkyl-Substituted Aminobis(phosphonates) : Efficient Precipitating Agents for Rare Earth Elements, Thorium, and Uranium in Aqueous Solutions
Virtanen, Emilia J.; Perämäki, Siiri; Helttunen, Kaisa; Väisänen, Ari; Moilanen, Jani O. (American Chemical Society (ACS), 2021)The efficient and environmentally sustainable separation process for rare earth elements (REE), especially for adjacent lanthanoids, remains a challenge due to the chemical similarity of REEs. Tetravalent actinoids, thorium, ...