Show simple item record

dc.contributor.authorBai, Yu
dc.contributor.authorChang, Zheng
dc.contributor.authorJäntti, Riku
dc.contributor.editorValenti, Matthew
dc.contributor.editorReed, David
dc.contributor.editorTorres
dc.contributor.editorMelissa
dc.date.accessioned2024-11-28T07:52:21Z
dc.date.available2024-11-28T07:52:21Z
dc.date.issued2024
dc.identifier.citationBai, Y., Chang, Z., & Jäntti, R. (2024). Deep Reinforcement Learning-enabled Dynamic UAV Deployment and Power Control in Multi-UAV Wireless Networks. In M. Valenti, D. Reed, Torres, & Melissa (Eds.), <i>ICC 2024 : IEEE International Conference on Communications</i> (pp. 1286-1290). IEEE. IEEE International Conference on Communications. <a href="https://doi.org/10.1109/ICC51166.2024.10622465" target="_blank">https://doi.org/10.1109/ICC51166.2024.10622465</a>
dc.identifier.otherCONVID_242680767
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/98692
dc.description.abstractUsing Unmanned Aerial Vehicles (UAVs) as aerial base stations for providing services to ground users has received growing research interest in recent years. The dynamic deployment of UAVs represents a significant research direction within UAV network studies. This paper introduces a highly adaptable UAV wireless network that accounts for the mobility of UAVs and users, the variability in their states, and the tunable transmission power of UAVs. The objective is to maximize energy efficiency while ensuring the minimum number of unserved online users. This dual objective is achieved by jointly optimizing the states, transmission powers, and movement strategies of UAVs. To address the variable state challenges posed by the dynamic environment, user and UAV data is encapsulated within a multi-channel map. A Convolutional Neural Network (CNN) then processes this map to extract key features. The deployment and power control strategy are determined by an agent trained by the Proximal Policy Optimization (PPO)-based Deep Reinforcement Learning (DRL) algorithm. Simulation results demonstrate the effectiveness of the proposed strategy in enhancing energy efficiency and reducing the number of unserved online users.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofICC 2024 : IEEE International Conference on Communications
dc.relation.ispartofseriesIEEE International Conference on Communications
dc.rightsIn Copyright
dc.titleDeep Reinforcement Learning-enabled Dynamic UAV Deployment and Power Control in Multi-UAV Wireless Networks
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202411287515
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-1-7281-9055-6
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1286-1290
dc.relation.issn1550-3607
dc.type.versionacceptedVersion
dc.rights.copyright© 2024 IEEE
dc.rights.accesslevelembargoedAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceIEEE International Conference on Communications
dc.subject.ysoenergiatehokkuus
dc.subject.ysoenergiajärjestelmät
dc.subject.ysolangattomat verkot
dc.subject.ysomiehittämättömät ilma-alukset
dc.subject.ysovahvistusoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p8328
jyx.subject.urihttp://www.yso.fi/onto/yso/p22348
jyx.subject.urihttp://www.yso.fi/onto/yso/p24221
jyx.subject.urihttp://www.yso.fi/onto/yso/p24149
jyx.subject.urihttp://www.yso.fi/onto/yso/p40315
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/ICC51166.2024.10622465
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright