Näytä suppeat kuvailutiedot

dc.contributor.authorTsymbal, Alexey
dc.contributor.authorPechenizkiy, Mykola
dc.contributor.authorCunningham, Padraig
dc.contributor.authorPuuronen, Seppo
dc.date.accessioned2024-11-15T11:05:07Z
dc.date.available2024-11-15T11:05:07Z
dc.date.issued2008
dc.identifier.citationTsymbal, A., Pechenizkiy, M., Cunningham, P., & Puuronen, S. (2008). Dynamic integration of classifiers for handling concept drift. <i>Information fusion</i>, <i>9</i>(1), 56-68. <a href="https://doi.org/10.1016/j.inffus.2006.11.002" target="_blank">https://doi.org/10.1016/j.inffus.2006.11.002</a>
dc.identifier.otherCONVID_16379860
dc.identifier.otherTUTKAID_22899
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/98469
dc.description.abstractIn the real world concepts are often not stable but change with time. A typical example of this in the biomedical context is antibiotic resistance, where pathogen sensitivity may change over time as new pathogen strains develop resistance to antibiotics that were previously effective. This problem, known as concept drift, complicates the task of learning a model from data and requires special approaches, different from commonly used techniques that treat arriving instances as equally important contributors to the final concept. The underlying data distribution may change as well, making previously built models useless. This is known as virtual concept drift. Both types of concept drifts make regular updates of the model necessary. Among the most popular and effective approaches to handle concept drift is ensemble learning, where a set of models built over different time periods is maintained and the best model is selected or the predictions of models are combined, usually according to their expertise level regarding the current concept. In this paper we propose the use of an ensemble integration technique that would help to better handle concept drift at an instance level. In dynamic integration of classifiers, each base classifier is given a weight proportional to its local accuracy with regard to the instance tested, and the best base classifier is selected, or the classifiers are integrated using weighted voting. Our experiments with synthetic data sets simulating abrupt and gradual concept drifts and with a real-world antibiotic resistance data set demonstrate that dynamic integration of classifiers built over small time intervals or fixed-sized data blocks can be significantly better than majority voting and weighted voting, which are currently the most commonly used integration techniques for handling concept drift with ensembles.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesInformation fusion
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherluokittelija
dc.subject.otherkäsitemuutos
dc.subject.otherMachine learning
dc.subject.otherChanging environment
dc.subject.otherConcept drift
dc.subject.otherEnsemble learning
dc.subject.otherDynamic integration of classifiers
dc.titleDynamic integration of classifiers for handling concept drift
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202411157310
dc.contributor.laitosTietojenkäsittelytieteiden laitosfi
dc.contributor.laitosDepartment of Computer Science and Information Systemsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange56-68
dc.relation.issn1566-2535
dc.relation.numberinseries1
dc.relation.volume9
dc.type.versionacceptedVersion
dc.rights.copyright© 2006 Elsevier B.V. All rights reserved.
dc.rights.accesslevelopenAccessfi
dc.subject.ysoennusteet
dc.subject.ysomallintaminen
dc.subject.ysosimulointi
dc.subject.ysomallit (mallintaminen)
dc.subject.ysokoneoppiminen
dc.subject.ysokäsitteet
dc.subject.ysoympäristönmuutokset
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p3297
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
jyx.subject.urihttp://www.yso.fi/onto/yso/p4787
jyx.subject.urihttp://www.yso.fi/onto/yso/p510
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p2267
jyx.subject.urihttp://www.yso.fi/onto/yso/p13431
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.inffus.2006.11.002
jyx.fundinginformationThis material is based upon work supported by the Science Foundation Ireland under Grant No. S.F.I.-02/N.1/111. This research was also partly supported by the Academy of Finland.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0