Näytä suppeat kuvailutiedot

dc.contributor.authorHeinosaari, Teiko
dc.contributor.authorKerppo, Oskari
dc.date.accessioned2024-11-12T08:35:36Z
dc.date.available2024-11-12T08:35:36Z
dc.date.issued2024
dc.identifier.citationHeinosaari, T., & Kerppo, O. (2024). Maximal Elements of Quantum Communication. <i>Quantum</i>, <i>8</i>, Article 1515. <a href="https://doi.org/10.22331/q-2024-11-07-1515" target="_blank">https://doi.org/10.22331/q-2024-11-07-1515</a>
dc.identifier.otherCONVID_243882028
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/98268
dc.description.abstractA prepare-and-measure scenario is naturally described by a communication matrix that collects all conditional outcome probabilities of the scenario into a row-stochastic matrix. The set of all possible communication matrices is partially ordered via the possibility to transform one matrix to another by pre- and post-processings. By considering maximal elements in this preorder for a subset of matrices implementable in a given theory, it becomes possible to identify communication matrices of maximum utility, i.e., matrices that are not majorized by any other matrices in the theory. The identity matrix of an appropriate size is the greatest element in classical theories, while the maximal elements in quantum theory have remained unknown. We completely characterize the maximal elements in quantum theory, thereby revealing the essential structure of the set of quantum communication matrices. In particular, we show that the identity matrix is the only maximal element in quantum theory but, as opposed to a classical theory, it is not the greatest element. Quantum theory can hence be seen to be distinct from classical theory by the existence of incompatible communication matrices.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherVerein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
dc.relation.ispartofseriesQuantum
dc.rightsCC BY 4.0
dc.titleMaximal Elements of Quantum Communication
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202411127115
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2521-327X
dc.relation.volume8
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Author(s).
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber343228
dc.relation.grantnumber8582/31/2022
dc.relation.grantnumber349945
dc.subject.ysokvanttiteoria
dc.subject.ysokvantti-informaatio
dc.subject.ysomatriisit
dc.subject.ysokvanttilaskenta
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p5565
jyx.subject.urihttp://www.yso.fi/onto/yso/p38824
jyx.subject.urihttp://www.yso.fi/onto/yso/p18099
jyx.subject.urihttp://www.yso.fi/onto/yso/p39209
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.22331/q-2024-11-07-1515
dc.relation.funderResearch Council of Finlanden
dc.relation.funderBusiness Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderBusiness Finlandfi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramOthers, AoFen
jyx.fundingprogramCo-Innovation, BFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramMuut, SAfi
jyx.fundingprogramCo-Innovation, BFfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationTH and OK acknowledge financial support from the Business Finland under the project TORQS, Grant 8582/31/2022, and from the Academy of Finland under the mobility funding Grant No. 343228, and under the project DEQSE, Grant No. 349945
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0