dc.contributor.author | De Koning, K. | |
dc.contributor.author | Nilsson, L. | |
dc.contributor.author | Månsson, J. | |
dc.contributor.author | Ovaskainen, O. | |
dc.contributor.author | Kranstauber, B. | |
dc.contributor.author | Arp, M. | |
dc.contributor.author | Schakel, J.K. | |
dc.date.accessioned | 2024-10-25T07:18:25Z | |
dc.date.available | 2024-10-25T07:18:25Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | De Koning, K., Nilsson, L., Månsson, J., Ovaskainen, O., Kranstauber, B., Arp, M., & Schakel, J.K. (2024). High-resolution spatiotemporal forecasting of the European crane migration. <i>Ecological Modelling</i>, <i>498</i>, Article 110884. <a href="https://doi.org/10.1016/j.ecolmodel.2024.110884" target="_blank">https://doi.org/10.1016/j.ecolmodel.2024.110884</a> | |
dc.identifier.other | CONVID_243639208 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/97690 | |
dc.description.abstract | In this paper we present three different models to forecast bird migration. They are species-specific individual-based models that operate on a high spatiotemporal resolution (kilometres, 15 min-hours), as an addition to radar-based migration forecast models that currently exist. The models vary in complexity, and use GPS-tracked location, flying direction and speed, and/or wind data to forecast migration speed and direction. Our aim is to quantitatively evaluate the forecasting performance and assess which metrics improve forecasts at different ranges. We test the models through cross-validation using GPS tracks of common cranes during spring and autumn migration. Our results show that recordings of flight speed and direction improve the accuracy of forecasts on the short range (<2 h). Adding wind data at flight altitude results in consistent improvements of the forecasts across the entire range, particularly in the predicted speed. Direction forecasts are less affected by adding wind data because cranes mostly compensate for wind drift during migration. Migration in spring is more difficult to forecast than in autumn, resulting in larger errors in flight speed and direction during spring. We further find that a combination of flight behaviours – thermal soaring, gliding, and flapping – complicates the forecasts by inducing variance in flight speed and direction. Fitting those behaviours into flight optimisation models proves to be challenging, and even results in significant biases in speed forecasts in spring. We conclude that flight speed is the most difficult parameter to forecast, whereas flight direction is the most critical for practical applications of these models. Such applications could e.g., be prevention of bird strikes in aviation or with wind turbines, and public engagement with bird migration. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Ecological Modelling | |
dc.rights | CC BY 4.0 | |
dc.subject.other | bird migration | |
dc.subject.other | ecological forecasting | |
dc.subject.other | common cranes | |
dc.subject.other | weather forecasts | |
dc.subject.other | individual-based modelling | |
dc.subject.other | GPS telemetry | |
dc.title | High-resolution spatiotemporal forecasting of the European crane migration | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202410256546 | |
dc.contributor.laitos | Bio- ja ympäristötieteiden laitos | fi |
dc.contributor.laitos | Department of Biological and Environmental Science | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0304-3800 | |
dc.relation.volume | 498 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 The Author(s). Published by Elsevier B.V. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 336212 | |
dc.relation.grantnumber | 856506 | |
dc.relation.grantnumber | 856506 | |
dc.relation.grantnumber | 345110 | |
dc.relation.grantnumber | 101057437 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/856506/EU//LIFEPLAN | |
dc.subject.yso | sääennusteet | |
dc.subject.yso | mallintaminen | |
dc.subject.yso | kurki (laji) | |
dc.subject.yso | muuttolinnut | |
dc.subject.yso | kurkilinnut | |
dc.subject.yso | migraatio (biologia) | |
dc.subject.yso | satelliittipaikannus | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p24302 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3533 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17884 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5250 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3040 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p29437 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p19374 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1016/j.ecolmodel.2024.110884 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | European Commission | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | European Commission | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Euroopan komissio | fi |
jyx.fundingprogram | Research post as Academy Professor, AoF | en |
jyx.fundingprogram | ERC European Research Council, H2020 | en |
jyx.fundingprogram | Research costs of Academy Professor, AoF | en |
jyx.fundingprogram | Research infrastructures, HE | en |
jyx.fundingprogram | Akatemiaprofessorin tehtävä, SA | fi |
jyx.fundingprogram | ERC European Research Council, H2020 | fi |
jyx.fundingprogram | Akatemiaprofessorin tutkimuskulut, SA | fi |
jyx.fundingprogram | Research infrastructures, HE | fi |
jyx.fundinginformation | This study received funding from the European Union under grant agreement No 101060954 (NATURE-FIRST, https://doi.org/10.3030/101060954). L. Nilsson was funded by FORMAS (no. 2018–000463) and transmitters were funded by the The Swedish Environmental Protection Agency. O. Ovaskainen was funded by Academy of Finland (grant no 336212 and 345110), and the European Union: the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 856506: ERC-synergy project LIFEPLAN), and the HORIZON-INFRA-2021-TECH-01 project 101057437 (Biodiversity Digital Twin for Advanced Modelling, Simulation and Prediction Capabilities). | |
dc.type.okm | A1 | |