Näytä suppeat kuvailutiedot

dc.contributor.authorDe Koning, K.
dc.contributor.authorNilsson, L.
dc.contributor.authorMånsson, J.
dc.contributor.authorOvaskainen, O.
dc.contributor.authorKranstauber, B.
dc.contributor.authorArp, M.
dc.contributor.authorSchakel, J.K.
dc.date.accessioned2024-10-25T07:18:25Z
dc.date.available2024-10-25T07:18:25Z
dc.date.issued2024
dc.identifier.citationDe Koning, K., Nilsson, L., Månsson, J., Ovaskainen, O., Kranstauber, B., Arp, M., & Schakel, J.K. (2024). High-resolution spatiotemporal forecasting of the European crane migration. <i>Ecological Modelling</i>, <i>498</i>, Article 110884. <a href="https://doi.org/10.1016/j.ecolmodel.2024.110884" target="_blank">https://doi.org/10.1016/j.ecolmodel.2024.110884</a>
dc.identifier.otherCONVID_243639208
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/97690
dc.description.abstractIn this paper we present three different models to forecast bird migration. They are species-specific individual-based models that operate on a high spatiotemporal resolution (kilometres, 15 min-hours), as an addition to radar-based migration forecast models that currently exist. The models vary in complexity, and use GPS-tracked location, flying direction and speed, and/or wind data to forecast migration speed and direction. Our aim is to quantitatively evaluate the forecasting performance and assess which metrics improve forecasts at different ranges. We test the models through cross-validation using GPS tracks of common cranes during spring and autumn migration. Our results show that recordings of flight speed and direction improve the accuracy of forecasts on the short range (<2 h). Adding wind data at flight altitude results in consistent improvements of the forecasts across the entire range, particularly in the predicted speed. Direction forecasts are less affected by adding wind data because cranes mostly compensate for wind drift during migration. Migration in spring is more difficult to forecast than in autumn, resulting in larger errors in flight speed and direction during spring. We further find that a combination of flight behaviours – thermal soaring, gliding, and flapping – complicates the forecasts by inducing variance in flight speed and direction. Fitting those behaviours into flight optimisation models proves to be challenging, and even results in significant biases in speed forecasts in spring. We conclude that flight speed is the most difficult parameter to forecast, whereas flight direction is the most critical for practical applications of these models. Such applications could e.g., be prevention of bird strikes in aviation or with wind turbines, and public engagement with bird migration.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesEcological Modelling
dc.rightsCC BY 4.0
dc.subject.otherbird migration
dc.subject.otherecological forecasting
dc.subject.othercommon cranes
dc.subject.otherweather forecasts
dc.subject.otherindividual-based modelling
dc.subject.otherGPS telemetry
dc.titleHigh-resolution spatiotemporal forecasting of the European crane migration
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202410256546
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0304-3800
dc.relation.volume498
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Author(s). Published by Elsevier B.V.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber336212
dc.relation.grantnumber856506
dc.relation.grantnumber856506
dc.relation.grantnumber345110
dc.relation.grantnumber101057437
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/856506/EU//LIFEPLAN
dc.subject.ysosääennusteet
dc.subject.ysomallintaminen
dc.subject.ysokurki (laji)
dc.subject.ysomuuttolinnut
dc.subject.ysokurkilinnut
dc.subject.ysomigraatio (biologia)
dc.subject.ysosatelliittipaikannus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p24302
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
jyx.subject.urihttp://www.yso.fi/onto/yso/p17884
jyx.subject.urihttp://www.yso.fi/onto/yso/p5250
jyx.subject.urihttp://www.yso.fi/onto/yso/p3040
jyx.subject.urihttp://www.yso.fi/onto/yso/p29437
jyx.subject.urihttp://www.yso.fi/onto/yso/p19374
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.ecolmodel.2024.110884
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuropean Commissionen
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuropean Commissionen
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramResearch post as Academy Professor, AoFen
jyx.fundingprogramERC European Research Council, H2020en
jyx.fundingprogramResearch costs of Academy Professor, AoFen
jyx.fundingprogramResearch infrastructures, HEen
jyx.fundingprogramAkatemiaprofessorin tehtävä, SAfi
jyx.fundingprogramERC European Research Council, H2020fi
jyx.fundingprogramAkatemiaprofessorin tutkimuskulut, SAfi
jyx.fundingprogramResearch infrastructures, HEfi
jyx.fundinginformationThis study received funding from the European Union under grant agreement No 101060954 (NATURE-FIRST, https://doi.org/10.3030/101060954). L. Nilsson was funded by FORMAS (no. 2018–000463) and transmitters were funded by the The Swedish Environmental Protection Agency. O. Ovaskainen was funded by Academy of Finland (grant no 336212 and 345110), and the European Union: the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 856506: ERC-synergy project LIFEPLAN), and the HORIZON-INFRA-2021-TECH-01 project 101057437 (Biodiversity Digital Twin for Advanced Modelling, Simulation and Prediction Capabilities).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0