Estimating intra- and inter-subject oxygen consumption in outdoor human gait using multiple neural network approaches
Müller, P., Pham-Dinh, K., Trinh, H., Rauhameri, A., & Cronin, N. J. (2024). Estimating intra- and inter-subject oxygen consumption in outdoor human gait using multiple neural network approaches. PLoS ONE, 19(9), Article e0303317. https://doi.org/10.1371/journal.pone.0303317
Julkaistu sarjassa
PLoS ONEPäivämäärä
2024Tekijänoikeudet
© 2024 Müller et al.
Oxygen consumption (VO2) is an important measure for exercise test, such as walking and running, that can be measured outdoors using portable spirometers or metabolic analyzers. However, these devices are not feasible for regular use by consumers as they intervene with the user’s physical integrity, and are expensive and difficult to operate. To circumvent these drawbacks, indirect estimation of VO2 using neural networks combined with motion features and heart rate measurements collected with consumer-grade sensors has been shown to yield reasonably accurate VO2 for intra-subject estimation. However, estimating VO2 with neural networks trained with data from other individuals than the user, known as inter-subject estimation, remains an open problem. In this paper, five types of neural network architectures were tested in various configurations for inter-subject VO2 estimation. To analyse predictive performance, data from 16 participants walking and running at speeds between 1.0 m/s and 3.3 m/s were used. The most promising approach was Xception network, which yielded average estimation errors as low as 2.43 ml×min−1×kg−1, suggesting that it could be used by athletes and running enthusiasts for monitoring their oxygen consumption over time to detect changes in their movement economy.
...
Julkaisija
Public Library of ScienceISSN Hae Julkaisufoorumista
1932-6203Julkaisuun liittyvä(t) tutkimusaineisto(t)
https://doi.org/10.23729/ a050e440-6f41-498d-8a31-097ff6881544.Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/243257852
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Liikuntatieteiden tiedekunta [3136]
Lisätietoja rahoituksesta
All authors received funding (as team members of a research consortium) from the Academy of Finland (https://www.aka.fi), grants 287295 and 323472.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Surrogate Modelling for Oxygen Uptake Prediction Using LSTM Neural Network
Davidson, Pavel; Trinh, Huy; Vekki, Sakari; Müller, Philipp (MDPI AG, 2023)Oxygen uptake (V̇O2) is an important metric in any exercise test including walking and running. It can be measured using portable spirometers or metabolic analyzers. Those devices are, however, not suitable for constant ... -
Neural networks for heart rate time series analysis
Saalasti, Sami (Jyväskylän yliopisto, 2003)Jyväskylän yliopisto, ammattikorkeakoulu ja elinkeinoelämä ovat viimevuosina investoineet voimakkaasti hyvinvointiteknologian kehittämiseen Jyvässeudun alueella. Tavoitteena on ollut kehittää alan yritystoimintaa ja ... -
Validity of Estimating the Maximal Oxygen Consumption by Consumer Wearables : A Systematic Review with Meta-analysis and Expert Statement of the INTERLIVE Network
Molina-Garcia, Pablo; Notbohm, Hannah L.; Schumann, Moritz; Argent, Rob; Hetherington-Rauth, Megan; Stang, Julie; Bloch, Wilhelm; Cheng, Sulin; Ekelund, Ulf; Sardinha, Luis B.; Caulfield, Brian; Brønd, Jan Christian; Grøntved, Anders; Ortega, Francisco B. (Springer, 2022)Background Technological advances have recently made possible the estimation of maximal oxygen consumption (VO2max) by consumer wearables. However, the validity of such estimations has not been systematically summarized ... -
Discovering hidden brain network responses to naturalistic stimuli via tensor component analysis of multi-subject fMRI data
Hu, Guoqiang; Li, Huanjie; Zhao, Wei; Hao, Yuxing; Bai, Zonglei; Nickerson, Lisa D.; Cong, Fengyu (Elsevier, 2022)The study of brain network interactions during naturalistic stimuli facilitates a deeper understanding of human brain function. To estimate large-scale brain networks evoked with naturalistic stimuli, a tensor component ... -
Recent advances in machine learning for maximal oxygen uptake (VO2 max) prediction : A review
Ashfaq, Atiqa; Cronin, Neil; Müller, Philipp (Elsevier, 2022)Maximal oxygen uptake ( max) is the maximum amount of oxygen attainable by a person during exercise. max is used in different domains including sports and medical sciences and is usually measured during an incremental ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.