Show simple item record

dc.contributor.authorChandramouli, Suyog
dc.contributor.authorShi, Danqing
dc.contributor.authorPutkonen, Aini
dc.contributor.authorDe Peuter, Sebastiaan
dc.contributor.authorZhang, Shanshan
dc.contributor.authorJokinen, Jussi
dc.contributor.authorHowes, Andrew
dc.contributor.authorOulasvirta, Antti
dc.date.accessioned2024-08-20T08:20:54Z
dc.date.available2024-08-20T08:20:54Z
dc.date.issued2024
dc.identifier.citationChandramouli, S., Shi, D., Putkonen, A., De Peuter, S., Zhang, S., Jokinen, J., Howes, A., & Oulasvirta, A. (2024). A Workflow for Building Computationally Rational Models of Human Behavior. <i>Computational Brain & Behavior</i>, <i>Early online</i>. <a href="https://doi.org/10.1007/s42113-024-00208-6" target="_blank">https://doi.org/10.1007/s42113-024-00208-6</a>
dc.identifier.otherCONVID_233428528
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/96674
dc.description.abstractComputational rationality explains human behavior as arising due to the maximization of expected utility under the constraints imposed by the environment and limited cognitive resources. This simple assumption, when instantiated via partially observable Markov decision processes (POMDPs), gives rise to a powerful approach for modeling human adaptive behavior, within which a variety of internal models of cognition can be embedded. In particular, such an instantiation enables the use of methods from reinforcement learning (RL) to approximate the optimal policy solution to the sequential decision-making problems posed to the cognitive system in any given setting; this stands in contrast to requiring ad hoc hand-crafted rules for capturing adaptive behavior in more traditional cognitive architectures. However, despite their successes and promise for modeling human adaptive behavior across everyday tasks, computationally rational models that use RL are not easy to build. Being a hybrid of theoretical cognitive models and machine learning (ML) necessitates that model building take into account appropriate practices from both cognitive science and ML. The design of psychological assumptions and machine learning decisions concerning reward specification, policy optimization, parameter inference, and model selection are all tangled processes rife with pitfalls that can hinder the development of valid and effective models. Drawing from a decade of work on this approach, a workflow is outlined for tackling this challenge and is accompanied by a detailed discussion of the pros and cons at key decision points.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Nature
dc.relation.ispartofseriesComputational Brain & Behavior
dc.rightsCC BY 4.0
dc.subject.othercomputational rationality
dc.subject.otherresource rationality
dc.subject.othermodeling workflow
dc.subject.otherPOMDPs
dc.titleA Workflow for Building Computationally Rational Models of Human Behavior
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202408205568
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2522-0861
dc.relation.volumeEarly online
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2024
dc.rights.accesslevelopenAccessfi
dc.subject.ysokäyttäytymisanalyysi
dc.subject.ysokognitiiviset prosessit
dc.subject.ysorationaalisuus
dc.subject.ysovahvistusoppiminen
dc.subject.ysokoneoppiminen
dc.subject.ysopäätöksenteko
dc.subject.ysomallintaminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p19534
jyx.subject.urihttp://www.yso.fi/onto/yso/p5283
jyx.subject.urihttp://www.yso.fi/onto/yso/p4487
jyx.subject.urihttp://www.yso.fi/onto/yso/p40315
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p8743
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s42113-024-00208-6
jyx.fundinginformationOpen Access funding provided by Aalto University. This work was supported by the Research Council of Finland (flagship program: Finnish Center for Artificial Intelligence, FCAI, grants 328400, 345604, 341763; Human Automata, grant 328813; Subjective Functions, grant 357578). Machines that Understand People, grant 330347. S.C was also supported by the Jorma Ollila Grant from Nokia Foundation.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0