Näytä suppeat kuvailutiedot

dc.contributor.authorMartín-Yerga, Daniel
dc.contributor.authorXu, Xiangdong
dc.contributor.authorValavanis, Dimitrios
dc.contributor.authorWest, Geoff
dc.contributor.authorWalker, Marc
dc.contributor.authorUnwin, Patrick R.
dc.date.accessioned2024-08-15T11:43:51Z
dc.date.available2024-08-15T11:43:51Z
dc.date.issued2024
dc.identifier.citationMartín-Yerga, D., Xu, X., Valavanis, D., West, G., Walker, M., & Unwin, P. R. (2024). High-Throughput Combinatorial Analysis of the Spatiotemporal Dynamics of Nanoscale Lithium Metal Plating. <i>ACS Nano</i>, <i>Early online</i>. <a href="https://doi.org/10.1021/acsnano.4c05001" target="_blank">https://doi.org/10.1021/acsnano.4c05001</a>
dc.identifier.otherCONVID_233420150
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/96623
dc.description.abstractThe development of Li metal batteries requires a detailed understanding of complex nucleation and growth processes during electrodeposition. In situ techniques offer a framework to study these phenomena by visualizing structural dynamics that can inform the design of uniform plating morphologies. Herein, we combine scanning electrochemical cell microscopy (SECCM) with in situ interference reflection microscopy (IRM) for a comprehensive investigation of Li nucleation and growth on lithiophilic thin-film gold electrodes. This multimicroscopy approach enables nanoscale spatiotemporal monitoring of Li plating and stripping, along with high-throughput capabilities for screening experimental conditions. We reveal the accumulation of inactive Li nanoparticles in specific electrode regions, yet these regions remain functional in subsequent plating cycles, suggesting that growth does not preferentially occur from particle tips. Optical-electrochemical correlations enabled nanoscale mapping of Coulombic Efficiency (CE), showing that regions prone to inactive Li accumulation require more cycles to achieve higher CE. We demonstrate that electrochemical nucleation time (tnuc) is a lagging indicator of nucleation and introduce an optical method to determine tnuc at earlier stages with nanoscale resolution. Plating at higher current densities yielded smaller Li nanoparticles and increased areal density, and was not affected by heterogeneous topographical features, being potentially beneficial to achieve a more uniform plating at longer time scales. These results enhance the understanding of Li plating on lithiophilic surfaces and offer promising strategies for uniform nucleation and growth. Our multimicroscopy approach has broad applicability to study nanoscale metal plating and stripping phenomena, with relevance in the battery and electroplating fields.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.ispartofseriesACS Nano
dc.rightsCC BY 4.0
dc.subject.otherlithium-ion battery
dc.subject.otherlithium plating
dc.subject.othernucleation and growth
dc.subject.otherscanning electrochemical cell microscopy
dc.subject.otheropto-electrochemistry
dc.subject.othercombinatorial electrochemistry
dc.titleHigh-Throughput Combinatorial Analysis of the Spatiotemporal Dynamics of Nanoscale Lithium Metal Plating
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202408155507
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1936-0851
dc.relation.volumeEarly online
dc.type.versionpublishedVersion
dc.rights.copyright© XXXX The Authors. Published by American Chemical Society
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber355569
dc.format.contentfulltext
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1021/acsnano.4c05001
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundinginformationWe acknowledge financial support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreements no. 101026563 (NANODENDRITE) and no. 812398 (SENTINEL). The SECCM-glovebox setup was funded by the Faraday Institution(FIRG013, Characterisation project). DMY acknowledges support from the Research Council of Finland (ref.355569). M.W. thanks the EPSRC-funded Warwick Analytical Science Centre (EP/V007688/1) for funding. We thank Dr. Mark Crouch from the Department of Engineering, University of Warwick, for the fabrication of the gold thin-film electrodes, and Steven Hindmarsh from the Electron Microscopy Research Technology Platform, University of Warwick, for helping with the AFM measurements.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0