Näytä suppeat kuvailutiedot

dc.contributor.authorGunasekara, Sachini
dc.contributor.authorSaarela, Mirka
dc.contributor.editorPaaßen, Benjamin
dc.contributor.editorDemmans Epp, Carrie
dc.date.accessioned2024-08-12T07:27:10Z
dc.date.available2024-08-12T07:27:10Z
dc.date.issued2024
dc.identifier.citationGunasekara, S., & Saarela, M. (2024). Explainability in Educational Data Mining and Learning Analytics : An Umbrella Review. In B. Paaßen, & C. Demmans Epp (Eds.), <i>Proceedings of the 17th International Conference on Educational Data Mining</i> (pp. 887-892). International Educational Data Mining Society. <a href="https://doi.org/10.5281/zenodo.12729987" target="_blank">https://doi.org/10.5281/zenodo.12729987</a>
dc.identifier.otherCONVID_233339006
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/96575
dc.description.abstractThis paper presents an umbrella review synthesizing the findings of explainability studies within the EDM and LA domains. By systematically reviewing existing reviews and adhering to the PRISMA guidelines, we identified 49 secondary studies, culminating in a final corpus of 10 studies for rigorous systematic review. This approach offers a comprehensive overview of the current state of explainability research in educational models, providing insights into methodologies, techniques, outcomes, and the effectiveness of explainability implementations in educational contexts, including the impact of data types, models, and metrics on explainability. Our analysis unveiled that observed variables, typically more easily understood, can directly enhance model explainability compared to latent variables, which are often harder to interpret. Moreover, while older studies accentuate the benefits of decision tree models for their intrinsic explainability and minimal need for additional explanation techniques, recent research favors more complex models and post-hoc explanation methods. Surprisingly, not a single publication in our corpus discussed metrics for evaluating the effectiveness or quality of explanations. However, a subset of articles in our collection addressed metrics for model performance and fairness in educational settings. Selecting optimal data types, models, and metrics promises to enhance transparency, interpretability, and accessibility for educators and students alike.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInternational Educational Data Mining Society
dc.relation.ispartofProceedings of the 17th International Conference on Educational Data Mining
dc.rightsCC BY-NC-ND 4.0
dc.subject.otheroppimisanalytiikka
dc.subject.otherexplainable artificial intelligence
dc.subject.othereducational data mining
dc.subject.otherlearning analytics
dc.subject.otherexplainability
dc.subject.otherumbrella review
dc.titleExplainability in Educational Data Mining and Learning Analytics : An Umbrella Review
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202408125451
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-1-7336736-5-5
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange887-892
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 Copyright is held by the author(s).
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceInternational conference on educational data mining
dc.relation.grantnumber356314
dc.subject.ysotiedonlouhinta
dc.subject.ysosystemaattiset kirjallisuuskatsaukset
dc.subject.ysotekoäly
dc.subject.ysooppiminen
dc.subject.ysotutkimusmenetelmät
dc.subject.ysoselittäminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p5520
jyx.subject.urihttp://www.yso.fi/onto/yso/p29683
jyx.subject.urihttp://www.yso.fi/onto/yso/p2616
jyx.subject.urihttp://www.yso.fi/onto/yso/p2945
jyx.subject.urihttp://www.yso.fi/onto/yso/p415
jyx.subject.urihttp://www.yso.fi/onto/yso/p332
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.5281/zenodo.12729987
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundinginformationThis work was supported by the Academy of Finland (project no. 356314).
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0