dc.contributor.author | Gunasekara, Sachini | |
dc.contributor.author | Saarela, Mirka | |
dc.contributor.editor | Paaßen, Benjamin | |
dc.contributor.editor | Demmans Epp, Carrie | |
dc.date.accessioned | 2024-08-12T07:27:10Z | |
dc.date.available | 2024-08-12T07:27:10Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Gunasekara, S., & Saarela, M. (2024). Explainability in Educational Data Mining and Learning Analytics : An Umbrella Review. In B. Paaßen, & C. Demmans Epp (Eds.), <i>Proceedings of the 17th International Conference on Educational Data Mining</i> (pp. 887-892). International Educational Data Mining Society. <a href="https://doi.org/10.5281/zenodo.12729987" target="_blank">https://doi.org/10.5281/zenodo.12729987</a> | |
dc.identifier.other | CONVID_233339006 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/96575 | |
dc.description.abstract | This paper presents an umbrella review synthesizing the findings of explainability studies within the EDM and LA domains. By systematically reviewing existing reviews and adhering to the PRISMA guidelines, we identified 49 secondary studies, culminating in a final corpus of 10 studies for rigorous systematic review. This approach offers a comprehensive overview of the current state of explainability research in educational models, providing insights into methodologies, techniques, outcomes, and the effectiveness of explainability implementations in educational contexts, including the impact of data types, models, and metrics on explainability. Our analysis unveiled that observed variables, typically more easily understood, can directly enhance model explainability compared to latent variables, which are often harder to interpret. Moreover, while older studies accentuate the benefits of decision tree models for their intrinsic explainability and minimal need for additional explanation techniques, recent research favors more complex models and post-hoc explanation methods. Surprisingly, not a single publication in our corpus discussed metrics for evaluating the effectiveness or quality of explanations. However, a subset of articles in our collection addressed metrics for model performance and fairness in educational settings. Selecting optimal data types, models, and metrics promises to enhance transparency, interpretability, and accessibility for educators and students alike. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | International Educational Data Mining Society | |
dc.relation.ispartof | Proceedings of the 17th International Conference on Educational Data Mining | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | oppimisanalytiikka | |
dc.subject.other | explainable artificial intelligence | |
dc.subject.other | educational data mining | |
dc.subject.other | learning analytics | |
dc.subject.other | explainability | |
dc.subject.other | umbrella review | |
dc.title | Explainability in Educational Data Mining and Learning Analytics : An Umbrella Review | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-202408125451 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 978-1-7336736-5-5 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 887-892 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 Copyright is held by the author(s). | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | International conference on educational data mining | |
dc.relation.grantnumber | 356314 | |
dc.subject.yso | tiedonlouhinta | |
dc.subject.yso | systemaattiset kirjallisuuskatsaukset | |
dc.subject.yso | tekoäly | |
dc.subject.yso | oppiminen | |
dc.subject.yso | tutkimusmenetelmät | |
dc.subject.yso | selittäminen | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5520 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p29683 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2616 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2945 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p415 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p332 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.5281/zenodo.12729987 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundinginformation | This work was supported by the Academy of Finland (project no. 356314). | |
dc.type.okm | A4 | |