Time Course of Neuromuscular Fatigue During Different Resistance Exercise Loadings in Power Athletes, Strength Athletes, and Nonathletes
Kotikangas, J., Walker, S., Peltonen, H., & Häkkinen, K. (2024). Time Course of Neuromuscular Fatigue During Different Resistance Exercise Loadings in Power Athletes, Strength Athletes, and Nonathletes. Journal of Strength and Conditioning Research, 38(7), 1231-1242. https://doi.org/10.1519/jsc.0000000000004769
Julkaistu sarjassa
Journal of Strength and Conditioning ResearchPäivämäärä
2024Pääsyrajoitukset
Embargo päättyy: 2025-08-01Pyydä artikkeli tutkijalta
Tekijänoikeudet
© 2024 Wolters Kluwer
Training background may affect the progression of fatigue and neuromuscular strategies to compensate for fatigue during resistance exercises. Thus, our aim was to examine how training background affects the time course of neuromuscular fatigue in response to different resistance exercises. Power athletes (PA, n = 8), strength athletes (SA, n = 8), and nonathletes (NA, n = 7) performed hypertrophic loading (HL, 5 × 10 × 10RM), maximal strength loadings (MSL, 7 × 3 × 3RM) and power loadings (PL, 7 × 6 × 50% of 1 repetition maximum) in back squat. Average power (AP), average velocity (VEL), surface electromyography (sEMG) amplitude (sEMGRMS), and sEMG mean power frequency (sEMGMPF) were measured within all loading sets. During PL, greater decreases in AP occurred from the beginning of SET1 to SET7 and in VEL to both SET4 and SET7 in NA compared with SA (p < 0.01, g > 1.84). During HL, there were various significant group × repetition interactions in AP within and between sets (p < 0.05, ηp2 > 0.307), but post hoc tests did not indicate significant differences between the groups (p > 0.05, g = 0.01–0.93). During MSL and HL, significant within-set and between-set decreases occurred in AP (p < 0.001, ηp2 > 0.701) and VEL (p < 0.001, ηp2 > 0.748) concurrently with increases in sEMGRMS (p < 0.01, ηp2 > 0.323) and decreases in sEMGMPF (p < 0.01, ηp2 > 0.242) in all groups. In conclusion, SA showed fatigue resistance by maintaining higher AP and VEL throughout PL. During HL, PA tended to have the greatest initial fatigue response in AP, but between-group comparisons were nonsignificant despite large effect sizes (g > 0.8). The differences in the progression of neuromuscular fatigue may be related to differing neural activation strategies between the groups, but further research confirmation is required.
...
Julkaisija
Wolters KluwerISSN Hae Julkaisufoorumista
1064-8011Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/220844774
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Liikuntatieteiden tiedekunta [3164]
Lisätietoja rahoituksesta
This work was supported by personal working grants to Johanna Kotikangas from Emil Aaltosen säätiö and Suomen Urheilututkimussäätiö, and the funders had no further involvement in any step of the project.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Acute neuromuscular responses and recovery after three different resistance exercise loadings in male power and strength athletes
Kotikangas, Johanna (2020)The frequency, volume, intensity and length of rest intervals affect neuromuscular fatigue caused by the resistance exercise. Acute neuromuscular responses and long-term adaptations to different types of resistance exercises ... -
Acute Neuromuscular and Hormonal Responses to Power, Strength, and Hypertrophic Protocols and Training Background
Kotikangas, Johanna; Walker, Simon; Toivonen, Sara; Peltonen, Heikki; Häkkinen, Keijo (Frontiers Media SA, 2022)This study investigated how two slightly different athlete groups would differ in acute neuromuscular and endocrine responses to specific resistance exercise loadings and recovery compared to untrained participants. Power ... -
Acute neuromuscular and hormonal responses to 20 versus 40% velocity loss in males and females before and after 8 weeks of velocity-loss resistance training
Walker, Simon; Häkkinen, Keijo; Virtanen, Roosa; Mane, Shashank; Bachero‐Mena, Beatriz; Pareja‐Blanco, Fernando (Wiley, 2022)Scientific examination of velocity-based resistance training (VBRT) has increased recently, but how males and females respond to different VBRT protocols or how these acute responses are modified after a period of training ... -
Isometric force-time parameters in monitoring of strength training : with special reference to acute responses to different loading resistances
Peltonen, Heikki (University of Jyväskylä, 2017)The aim of the present series of studies was to investigate acute neuromuscular responses to (1) different strength training loadings and using (2) different external resistances. In addition, chronic adaptations and ... -
Acute neuromuscular and hormonal responses and long-term adaptations to hypertrophic resistance training : with special reference to constant versus variable resistance
Walker, Simon (University of Jyväskylä, 2012)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.