Näytä suppeat kuvailutiedot

dc.contributor.authorMäkinen, Raino A. E.
dc.contributor.authorToivanen, Jari
dc.date.accessioned2024-06-17T07:04:06Z
dc.date.available2024-06-17T07:04:06Z
dc.date.issued2024
dc.identifier.citationMäkinen, R. A. E., & Toivanen, J. (2024). Monte Carlo Expected Wealth and Risk Measure Trade-Off Portfolio Optimization. <i>Siam Journal on Financial Mathematics</i>, <i>15</i>(2), SC41-SC53. <a href="https://doi.org/10.1137/23M1624439" target="_blank">https://doi.org/10.1137/23M1624439</a>
dc.identifier.otherCONVID_220705908
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/95930
dc.description.abstractA multiperiod portfolio optimization is described with Monte Carlo sampled risky asset paths under realistic constraints on the investment policies. The proposed approach can be used with various asset and risk models. It is flexible as it does not require dynamic programming or any transformations. As examples, the variance and semivariance risks are considered leading to mean-variance and mean-semivariance formulations, respectively. A quasi-Newton method with an adjoint gradient computation can solve the resulting optimization problems efficiently. Numerical examples show efficient frontiers together with optimal asset allocations computed for mean-variance and mean-semivariance portfolios with two and five assets.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSociety for Industrial & Applied Mathematics (SIAM)
dc.relation.ispartofseriesSiam Journal on Financial Mathematics
dc.rightsIn Copyright
dc.subject.otherdynamic portfolio management
dc.subject.othermean-variance optimization
dc.subject.othermean-semivariance optimization
dc.subject.otherconstrained optimization
dc.subject.otherMonte Carlo simulation
dc.titleMonte Carlo Expected Wealth and Risk Measure Trade-Off Portfolio Optimization
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202406174696
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerangeSC41-SC53
dc.relation.issn1945-497X
dc.relation.numberinseries2
dc.relation.volume15
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 Society for Industrial and Applied Mathematics
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber295897
dc.subject.ysosijoitustoiminta
dc.subject.ysomatemaattinen optimointi
dc.subject.ysotalousmatematiikka
dc.subject.ysonumeeriset menetelmät
dc.subject.ysoMonte Carlo -menetelmät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p4321
jyx.subject.urihttp://www.yso.fi/onto/yso/p17635
jyx.subject.urihttp://www.yso.fi/onto/yso/p9288
jyx.subject.urihttp://www.yso.fi/onto/yso/p6588
jyx.subject.urihttp://www.yso.fi/onto/yso/p6361
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1137/23M1624439
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis work was funded by the Academy of Finland, project 295897.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright