Show simple item record

dc.contributor.authorKoski, Vilja
dc.contributor.authorKärkkäinen, Salme
dc.contributor.authorKarvanen, Juha
dc.date.accessioned2024-06-05T07:30:25Z
dc.date.available2024-06-05T07:30:25Z
dc.date.issued2024
dc.identifier.citationKoski, V., Kärkkäinen, S., & Karvanen, J. (2024). Subsample Selection Methods in the Lake Management. <i>Journal of Agricultural, Biological, and Environmental Statistics</i>, <i>Early online</i>. <a href="https://doi.org/10.1007/s13253-024-00630-0" target="_blank">https://doi.org/10.1007/s13253-024-00630-0</a>
dc.identifier.otherCONVID_216114033
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/95526
dc.description.abstractThe problem of subsample selection among an enormous number of combinations arises when some covariates are available for all units, but the response can be measured only for a subset of them. When estimating a Bayesian prediction model, optimized selections can be more efficient than random sampling. The work is motivated by environmental management of aquatic systems. We consider data on 4360 Finnish lakes and aim to find an approximately optimal subsample of lakes in the sense of Bayesian D-optimality. We study Bayesian two-stage selection where the choice of lakes to be measured at the second stage depends on the measurements carried out at the first stage. The results indicate that the two-stage approach has a modest advantage compared to the single-stage approach.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesJournal of Agricultural, Biological, and Environmental Statistics
dc.rightsCC BY 4.0
dc.subject.otherapproximate design
dc.subject.otherBayesian design
dc.subject.otherinformation matrix
dc.subject.otheroptimal design
dc.subject.otheroptimality criteria
dc.subject.otherutility function
dc.titleSubsample Selection Methods in the Lake Management
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202406054286
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1085-7117
dc.relation.volumeEarly online
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Author(s)
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.format.contentfulltext
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s13253-024-00630-0
jyx.fundinginformationCorresponding author acknowledges the support by the Emil Aaltonen Foundation and Kone foundation. CSC–IT Center for Science, Finland, is acknowledged for computational resources. Open Access funding provided by University of Jyväskylä (JYU).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0