Spectroscopic studies of electron transfer reactions at the photoactive electrode of dye-sensitized solar cells
Julkaistu sarjassa
Research report / Department of Chemistry, University of JyväskyläTekijät
Päivämäärä
2013Harnessing solar energy is a key issue in solving the global energy challenge. The Sun's radiant energy can be converted into electricity by photovoltaics. One of the most promising, emerging PV technologies is the dye-sensitized solar cell. In order to develop this technology, understanding the dynamics of charge separation and electron transfer reactions in the cell is of fundamental importance. In this thesis, rates of electron transfer in dye-sensitized titanium dioxide films and complete solar cells were investigated by means of transient absorption and transient emission spectroscopies, as well as with electrochemical impedance spectroscopy. The effect of altering electron transfer rates on the performance of the cells was monitored by recording the current-voltage response of the cells under simulated sunlight. Electron transfer from two ruthenium dyes to titanium dioxide film (electron injection) in neat solvent and in the presence of an iodide/triiodide electrolyte was studied by following the ultrafast temporal evolutions of the absorptions of oxidized dye and of injected electrons. Electron injection was found to be almost two orders of magnitude slower in the presence of the complete electrolyte compared to injection in neat solvent. Comparison of the transient absorption signals of the oxidized dye and injected electrons of the sensitized TiO2 films in contact with the I-/I3- electrolyte revealed the picosecond time scale of dye regeneration for the first time, twenty years after the invention of the cell. This observation also paves the way for understanding the detailed molecular mechanisms of the function of the electrolyte redox couple in the cell. Metal oxide barrier layers deposited on the nanocrystalline TiO2 film were studied as a means to improve cell performance. The desired effect of the barrier layer is to slow down recombination reactions while maintaining good electron injection efficiency. Barrier layers were prepared with atomic layer deposition for better controllability of layer thickness and morphology. Aluminum oxide was found to slow down injection more than recombination, which led to deterioration of cell performance. Hafnium oxide barriers up to four atomic layer cycles retarded injection much less than the corresponding aluminum oxide layers, and in practice, retained cell performance. According to this result, increasing hafnium oxide layer thickness and improving its penetration into TiO2 film would provide a means to improve cell performance. Surprisingly, a relatively thick (about 1nm) tantalum oxide coating resulted in enhancement of the injection efficiency and led to about a 10% increase in the current output of the cell. This finding was significant as no barrier layer on TiO2 so far has been reported to have shown an increase in injection efficiency. More interestingly, improved cell performance was obtained for the TiO2 film with only the top quarter of the film covered with tantalum oxide.
...
ISBN
978-952-86-0223-1ISSN Hae Julkaisufoorumista
0357-346XJulkaisuun sisältyy osajulkaisuja
- Artikkeli I: Antila, L., Myllyperkiö, P., Mustalahti, S., Lehtivuori, H., & Korppi-Tommola, J. (2014). Injection and Ultrafast Regeneration in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 118(15), 7772-7780. DOI: 10.1021/jp4124277
- Artikkeli II: Antila, L., Heikkilä, M. J., Lehtovuori, V., Kemell, M., Myllyperkiö, P., Leskelä, M., & Korppi-Tommola, J. (2010). Suppression of forward electron injection from Ru(dcbpy)2(NCS)2 to nanocrystalline TiO2 film as a result of interfacial Al2O3 barrier layer prepared with atomic layer deposition. Journal of Physical Chemistry Letters, 1, 536-539. DOI: 10.1021/jz9003075
- Artikkeli III: Antila, L., Heikkilä, M. J., Mäkinen, V., Humalamäki, N., Laitinen, M., Linko, V., Jalkanen, P., Toppari, J., Aumanen, V., Kemell, M., Myllyperkiö, P., Honkala, K., Häkkinen, H., Leskelä, M., & Korppi-Tommola, J. (2011). ALD Grown Aluminum Oxide Submonolayers in Dye-Sensitized Solar Cells: The Effect on Interfacial Electron Transfer and Performance. The Journal of Physical Chemistry C, 115(33), 16720-16729. DOI: 10.1021/jp204886n
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Väitöskirjat [3568]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Cluster-transfer reactions with radioactive beams: A spectroscopic tool for neutron-rich nuclei
Bottoni, S.; Leoni, S.; Fornal, B.; Raabe, R.; Rusek, K.; Benzoni, G.; Bracco, A.; Crespi, F. C. L.; Morales, A. I.; Bednarczyk, P.; Cieplicka-Oryńczak, N.; Królas, W.; Maj, A.; Szpak, B.; Callens, M.; Bouma, J.; Elseviers, J.; De Witte, H.; Flavigny, F.; Orlandi, R.; Reiter, P.; Seidlitz, M.; Warr, N.; Siebeck, B.; Hellgartner, S.; Mücher, D.; Pakarinen, Janne; Vermeulen, M.; Bauer, C.; Georgiev, G.; Janssens, R. V. F.; Balabanski, D.; Sferrazza, M.; Kowalska, M.; Rapisarda, E.; Voulot, D.; Benito, M. Lozano; Wenander, F. (American Physical Society, 2015) -
Influence of Nitrogen Doping on Device Operation for TiO2-Based Solid-State Dye-Sensitized Solar Cells: Photo-Physics from Materials to Devices
Wang, Jin; Tapio, Kosti; Habert, Aurélie; Sorgues, Sebastien; Colbeau-Justin, Christophe; Ratier, Bernard; Scarisoreanu, Monica; Toppari, Jussi; Herlin-Boime, Nathalie; Bouclé, Johann (MDPI AG, 2016)Solid-state dye-sensitized solar cells (ssDSSC) constitute a major approach to photovoltaic energy conversion with efficiencies over 8% reported thanks to the rational design of efficient porous metal oxide electrodes, ... -
Electronic Structures and Spectroscopic Properties of 6π-Electron Ring Molecules and Ions E2N2 and E42+ (E = S, Se, Te)
Tuononen, Heikki; Suontamo, Reijo; Valkonen, Jussi; Laitinen, Risto (ACS, 2004)The electronic structures and molecular properties of square-planar 6π-electron ring molecules and ions E2N2 and E42+ (E = S, Se, Te) were studied using various ab initio methods and density functionals. All species were ... -
Spectroscopic studies of atoms and small molecules isolated in rare gas solids : photodissociation and thermal reactions
Ahokas, Jussi (2006)The spectroscopy and the chemical dynamics of atoms and small molecules in solid rare gas matrices are studied in this thesis. The many-body nature of the surrounding solid environment causes effects on the spectroscopy ... -
Electronic and vibrational spectroscopic studies of gold-nanoclusters
Koivisto, Jaakko (University of Jyväskylä, 2016)Gold nanoclusters are a peculiar new material with properties between that of bulk metal and single atoms. They show size-dependent evolution of optical and electronic properties sensitive to the change of single atom ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.