Show simple item record

dc.contributor.authorHelske, Jouni
dc.contributor.authorTikka, Santtu
dc.date.accessioned2024-05-27T07:11:40Z
dc.date.available2024-05-27T07:11:40Z
dc.date.issued2024
dc.identifier.citationHelske, J., & Tikka, S. (2024). Estimating Causal Effects from Panel Data with Dynamic Multivariate Panel Models. <i>Advances in Life Course Research</i>, <i>60</i>, Article 100617. <a href="https://doi.org/10.1016/j.alcr.2024.100617" target="_blank">https://doi.org/10.1016/j.alcr.2024.100617</a>
dc.identifier.otherCONVID_213662371
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/95202
dc.description.abstractPanel data are ubiquitous in scientific fields such as social sciences. Various modeling approaches have been presented for observational causal inference based on such data. Existing approaches typically impose restrictive assumptions on the data-generating process such as Gaussian responses or time-invariant effects, or they can only consider short-term causal effects. To surmount these restrictions, we present the dynamic multivariate panel model (DMPM) that supports time-varying, time-invariant, and individual-specific effects, multiple responses across a wide variety of distributions, and arbitrary dependency structures of lagged responses of any order. We formally demonstrate how DMPM facilitates causal inference within the structural causal modeling framework and we take a Bayesian approach for the estimation of the posterior distributions of the model parameters and causal effects of interest. We demonstrate the use of DMPM by applying the approach to both real and synthetic data.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesAdvances in Life Course Research
dc.rightsCC BY 4.0
dc.subject.otherBayesian methods
dc.subject.othercausal inference
dc.subject.otherMarkov models
dc.subject.otherintervention
dc.subject.otherpanel data
dc.subject.otherprediction
dc.titleEstimating Causal Effects from Panel Data with Dynamic Multivariate Panel Models
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202405273966
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1569-4909
dc.relation.volume60
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Author(s). Published by Elsevier Ltd.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber331817
dc.subject.ysointerventio
dc.subject.ysopaneelitutkimus
dc.subject.ysoMarkovin ketjut
dc.subject.ysobayesilainen menetelmä
dc.subject.ysokausaliteetti
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p41
jyx.subject.urihttp://www.yso.fi/onto/yso/p25377
jyx.subject.urihttp://www.yso.fi/onto/yso/p13075
jyx.subject.urihttp://www.yso.fi/onto/yso/p17803
jyx.subject.urihttp://www.yso.fi/onto/yso/p333
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.alcr.2024.100617
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis work was funded by the Research Council of Finland (decision numbers 331817, 355153, and 345546).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0