Commodity markets and the global macroeconomy : evidence from machine learning and GVAR
Boakye, E. O., Heimonen, K., & Junttila, J. (2024). Commodity markets and the global macroeconomy : evidence from machine learning and GVAR. Empirical Economics, Early online. https://doi.org/10.1007/s00181-024-02612-0
Julkaistu sarjassa
Empirical EconomicsPäivämäärä
2024Tekijänoikeudet
© The Author(s) 2024
Based on a strongly data-intensive machine learning approach, this study first identifies the most essential globally traded commodities in view of their role for the global macroeconomic performance. At the second stage we estimate a global vector autoregressive model to assess in more detail these global reactions. Our results from the first stage indicate that of the 55 analyzed commodity markets, only four are revealed as the most important. At the second step, our GVAR analysis indicates that the commodity market effects on macroeconomic activity are neither unanimous across the commodities nor across macrovariables. As an overall result, the commodity market exposure is clearly stronger among the advanced countries such as the euro area, other developed economies, and China, compared to the emerging economies of Africa, Asia, and Latin America, at both the country and regional levels. This puts a lot of pressure on economic policies aimed at reducing, e.g., the depriving effects of commodity market price development on aggregate economic performance of these countries.
...
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0377-7332Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/215951938
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Kauppakorkeakoulu [1381]
Lisätietoja rahoituksesta
Open Access funding provided by University of Oulu (including Oulu University Hospital). This project was supported by OP Financial Group Research Foundation, Finland, for the first author. [Under Grant Numbers 20210078].Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Assessing the Commodity Market Price and Terms of Trade Exposures of Macroeconomy in Emerging and Developing Countries
Boakye, Ernest Owusu; Heimonen, Kari; Junttila, Juha (Routledge, 2022)This paper provides novel evidence on commodity market exposure, i.e., the impacts of commodity price and terms of trade fluctuations on macro performance amongst 46 emerging and developing countries (EMDCs) in Africa, ... -
Applications of Artificial Intelligence in the Economy, Including Applications in Stock Trading, Market Analysis, and Risk Management
Rahmani, Amir Masoud; Rezazadeh, Bahareh; Haghparast, Majid; Chang, Wei-Che; Ting, Shen Guan (Institute of Electrical and Electronics Engineers (IEEE), 2023)In an increasingly automated world, Artificial Intelligence (AI) promises to revolutionize how people work, consume, and develop their societies. Science and technology advancement has led humans to seek solutions to ... -
Luonnonvarat : kirous vai siunaus talouskasvulle?
Heiskanen, Niko (2022)Luonnonvarojen nähdään luovan edellytyksiä valtioiden kehitykselle ja talouskasvulle, sillä teoriassa luonnonvaratulot voidaan muuttaa talouskasvun suoriksi tekijöiksi, kuten inhimilliseksi ja fyysiseksi pääomaksi. ... -
Makroselityksistä, vakauttajavaltioista ja kapitalismista
Eskelinen, Teppo (Poliittisen talouden tutkimuksen seura, 2016)Wolfgang Streeck avaa kirjassaan Ostettua aikaa (Streeck 2016) kapitalismin ja demokratian suhdetta. Tämä on olennaista ja ajankohtaista. Taloudellisten toimijoiden kyky suojautua demokraattiselta yhdenvertaisuusperiaatteelta ... -
Digitalization of global economy and public sector funding
Watanabe, Chihiro; Ilmola, Leena (Jyväskylän yliopisto, Informaatioteknologian tiedekunta, 2018)This report aims to trigger discussion. Our recent research reveals that digitalization, platform economy, Internet of Things, and artificial intelligence will change the structures of the global economy. All this will ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.