Show simple item record

dc.contributor.authorZambrano, L.
dc.contributor.authorMuñoz-Moller, A. D.
dc.contributor.authorMuñoz, M.
dc.contributor.authorPereira, L.
dc.contributor.authorDelgado, A
dc.date.accessioned2024-05-23T11:27:21Z
dc.date.available2024-05-23T11:27:21Z
dc.date.issued2024
dc.identifier.citationZambrano, L., Muñoz-Moller, A. D., Muñoz, M., Pereira, L., & Delgado, A. (2024). Avoiding barren plateaus in the variational determination of geometric entanglement. <i>Quantum Science and Technology</i>, <i>9</i>(2), Article 025016. <a href="https://doi.org/10.1088/2058-9565/ad2a16" target="_blank">https://doi.org/10.1088/2058-9565/ad2a16</a>
dc.identifier.otherCONVID_215901295
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/95118
dc.description.abstractThe barren plateau (BP) phenomenon is one of the main obstacles to implementing variational quantum algorithms in the current generation of quantum processors. Here, we introduce a method capable of avoiding the BP phenomenon in the variational determination of the geometric measure of entanglement for a large number of qubits. The method is based on measuring compatible two-qubit local functions whose optimization allows for achieving a well-suited initial condition from which a global function can be further optimized without encountering a BP. We analytically demonstrate that the local functions can be efficiently estimated and optimized. Numerical simulations up to 18 qubit GHZ and W states demonstrate that the method converges to the exact value. In particular, the method allows for escaping from BPs induced by hardware noise or global functions defined on high-dimensional systems. Numerical simulations with noise agree with experiments carried out on IBM's quantum processors for seven qubits.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIOP Publishing
dc.relation.ispartofseriesQuantum Science and Technology
dc.rightsCC BY 4.0
dc.titleAvoiding barren plateaus in the variational determination of geometric entanglement
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202405233882
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2058-9565
dc.relation.numberinseries2
dc.relation.volume9
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.subject.ysokvanttilaskenta
dc.subject.ysoalgoritmiikka
dc.subject.ysosimulointi
dc.subject.ysooptimointi
dc.subject.ysokvanttitietokoneet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p39209
jyx.subject.urihttp://www.yso.fi/onto/yso/p3365
jyx.subject.urihttp://www.yso.fi/onto/yso/p4787
jyx.subject.urihttp://www.yso.fi/onto/yso/p13477
jyx.subject.urihttp://www.yso.fi/onto/yso/p38991
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1088/2058-9565/ad2a16
jyx.fundinginformationThis work was supported by ANID—Millennium Science Initiative Program—ICN17-012. L Z was supported by the Government of Spain (Severo Ochoa CEX2019-000910-S, TRANQI, and European Union NextGenerationEU PRTR-C17.I1), Fundació Cellex, Fundació Mir-Puig and Generalitat de Catalunya (CERCA program). A D was supported by FONDECYT Grants 1231940 and 1230586. M M was supported by ANID-PFCHA/DOCTORADO-NACIONAL/2019-21190958. L P was supported by ANID-PFCHA/DOCTORADO-BECAS-CHILE/2019-772200275, the CSIC Interdisciplinary Thematic Platform (PTI+) on Quantum Technologies (PTI-QTEP+), the CAM/FEDER Project No. S2018/TCS-4342 (QUITEMAD-CM), and the Proyecto Sinérgico CAM 2020 Y2020/TCS-6545 (NanoQuCo-CM).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0