dc.contributor.author | Dąbrowski, Damian | |
dc.contributor.author | Orponen, Tuomas | |
dc.contributor.author | Wang, Hong | |
dc.date.accessioned | 2024-05-03T08:31:31Z | |
dc.date.available | 2024-05-03T08:31:31Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Dąbrowski, D., Orponen, T., & Wang, H. (2024). How much can heavy lines cover?. <i>Journal of the London Mathematical Society</i>, <i>109</i>(5), Article e12910. <a href="https://doi.org/10.1112/jlms.12910" target="_blank">https://doi.org/10.1112/jlms.12910</a> | |
dc.identifier.other | CONVID_213478190 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/94677 | |
dc.description.abstract | One formulation of Marstrand’s slicing theorem is the following. Assume that𝑡∈(1,2],and𝐵⊂ℝ2is a Borel set with 𝑡(𝐵)<∞. Then, for almost all directions𝑒∈𝑆1, 𝑡 almost all of 𝐵 is covered by lines𝓁parallel to 𝑒 with dim H(𝐵∩𝓁)=𝑡−1. We investigate the prospects of sharpening Marstrand’s result in the following sense: in a generic direction𝑒∈𝑆1, is it true that a strictly less than 𝑡-dimensional part of𝐵is covered by the heavy lines𝓁⊂ℝ2, namely those with dim H(𝐵∩𝓁)>𝑡−1? A positive answer for𝑡-regular sets𝐵⊂ℝ2was previously obtained by the first author. The answer for general Borel sets turns out to be negative for𝑡∈(1,32] and positive for𝑡∈(32,2]. More precisely, the heavy lines can cover up to amin{𝑡,3−𝑡} dimensional part of𝐵in a generic direction. We also consider the part of𝐵covered by the𝑠-heavy lines, namely those with dim H(𝐵∩𝓁)⩾𝑠for𝑠>𝑡−1. We establish a sharp answer to the question: how much can the𝑠-heavy lines cover in a generic direction? Finally, we identify a new class of sets called sub-uniformly distributed sets, which generalise Ahlfors-regular sets. Roughly speaking, these sets share the spatial uniformity of Ahlfors-regular sets, but pose no restrictions on uniformity across different scales. We then extend and sharpen the first author’s previous result on Ahlfors-regular sets to the class of sub uniformly distributed sets. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Wiley-Blackwell | |
dc.relation.ispartofseries | Journal of the London Mathematical Society | |
dc.rights | CC BY 4.0 | |
dc.title | How much can heavy lines cover? | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202405033304 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0024-6107 | |
dc.relation.numberinseries | 5 | |
dc.relation.volume | 109 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 The Authors.Journal of the London Mathematical Society is copyright © London Mathematical Society | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 347123 | |
dc.relation.grantnumber | 101087499 | |
dc.relation.grantnumber | 101087499 | |
dc.relation.grantnumber | 355453 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/101087499/EU//MUSING | |
dc.format.content | fulltext | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1112/jlms.12910 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | European Commission | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Postdoctoral Researcher, AoF | en |
jyx.fundingprogram | ERC Consolidator Grant, HE | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Tutkijatohtori, SA | fi |
jyx.fundingprogram | ERC Consolidator Grant, HE | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | Research Council of Finland, Grant/Award Numbers: 347123, 355453; European Research Council, Grant/Award Number: 101087499; NSF, Grant/Award Numbers: DMS-2238818, DMS-2055544. | |
dc.type.okm | A1 | |