Comparison of activity trackers in estimating canine behaviors
Kujala, M., Valldeoriola Cardó, A., Somppi, S., Törnqvist, H., Inkilä, L., Koskela, A., Myller, A., Väätäjä, H., Isokoski, P., Majaranta, P., Surakka, V., Vainio, O., & Vehkaoja, A. (2024). Comparison of activity trackers in estimating canine behaviors. Advanced robotics, Early online. https://doi.org/10.1080/01691864.2024.2343080
Julkaistu sarjassa
Advanced roboticsTekijät
Päivämäärä
2024Tekijänoikeudet
© 2024 the Authors
Classifying behavior by tracking acceleration has received increased interest lately. Here, we evaluated the performance of three commercial activity trackers in differentiating seven dog behaviors. Adult companion dogs (N = 70) performed still (lying, sitting, standing) and dynamic (walking, sniffing, trotting, playing) tasks, while wearing ActiGraph GT9X Link, Kaunila and FitBark devices placed on the neck collar and ActiGraph GT9X Link placed on the back. Each task was performed for 3 min within a session and repeated in two sessions; the behaviors were confirmed from video recordings. Activity scores of devices were calculated as median values for behavioral differentiation, and as minute-based values for inter-device correlations and cutoff analysis. Measurements of all devices correlated with each other, and median activity scores of all devices − unaffected by dog age, weight or sex − differentiated the still from dynamic behaviors. Dynamic behaviors were also differentiated from each other, with exception of walking vs. sniffing by back-placed ActiGraph GT9X and Kaunila. The definition of cutoffs between behaviors varied from moderate to high accuracy; defined cutoffs for standing and walking were the least accurate. The classification performance of the cutoffs had an accuracy of 80% in all the devices; thus, they performed reasonably well in classifying these behaviors.
...
Julkaisija
Taylor & FrancisISSN Hae Julkaisufoorumista
0169-1864Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/213409613
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkija, SA; Akatemiatutkijan tutkimuskulut, SALisätietoja rahoituksesta
This work was supported by the Business Finland (Tekes) under Grants #7244/31/2016, #1894/31/2016, and #1665/31/2016; and Academy of Finland under Grants #341092 and #346430.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Segmentation boundaries in accelerometer data of arm motion induced by music : online computation and perceptual assessment
Mendoza Garay, Juan Ignacio (Centre of Sociological Research, 2022)Segmentation is a cognitive process involved in the understanding of information perceived through the senses. Likewise, the automatic segmentation of data captured by sensors may be used for the identification of patterns. ... -
Revisiting the cross‐sectional and prospective association of physical activity with body composition and physical fitness in preschoolers : A compositional data approach
Migueles, Jairo H.; Delisle Nyström, Christine; Leppänen, Marja H.; Henriksson, Pontus; Löf, Marie (Wiley, 2022)Background Information is limited for the benefits of physical activity (PA) in preschoolers. Previous research using accelerometer-assessed PA may be affected for multicollinearity issues. Objectives This study ... -
Associations of physical activity intensities, impact intensities and osteogenic index with proximal femur bone traits among sedentary older adults
Savikangas, Tiina; Sipilä, Sarianna; Rantalainen, Timo (Elsevier, 2021)Background Dynamic high-intensity physical activity is thought to be beneficial for older adults’ bone health. Traditional volume-based processing of accelerometer-measured physical activity data, quantified on a ... -
Comparison of acceleration and EMG signals in quantifying physical activity
Mikkola, Sakari (2012)Fyysisen aktiivisuuden puute on muodostumassa kasvavaksi ongelmaksi maailmanlaajuisesti. WHO:n mukaan yli 15 vuotiaista noin 31% eivät liikkuneet terveytensä kannalta tarpeeksi vuonna 2008. Liikkumattomuus on luokiteltu ... -
Clusters of Adolescent Physical Activity Tracker Patterns and Their Associations With Physical Activity Behaviors in Finland and Ireland : Cross-Sectional Study
Ng, Kwok; Kokko, Sami; Tammelin, Tuija; Kallio, Jouni; Belton, Sarahjane; O'Brien, Wesley; Murphy, Marie; Powell, Cormac; Woods, Catherine (JMIR Publications, 2020)Background: Physical activity trackers (PATs), such as applications (Apps) and wearable devices (e.g. sport watches and heart rate monitors), are increasingly being used by young adolescents. Despite the potential to ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.