Show simple item record

dc.contributor.authorMortensen, Jens Jørgen
dc.contributor.authorLarsen, Ask Hjorth
dc.contributor.authorKuisma, Mikael
dc.contributor.authorIvanov, Aleksei V.
dc.contributor.authorTaghizadeh, Alireza
dc.contributor.authorPeterson, Andrew
dc.contributor.authorHaldar, Anubhab
dc.contributor.authorDohn, Asmus Ougaard
dc.contributor.authorSchäfer, Christian
dc.contributor.authorJónsson, Elvar Örn
dc.contributor.authorHermes, Eric D.
dc.contributor.authorNilsson, Fredrik Andreas
dc.contributor.authorKastlunger, Georg
dc.contributor.authorLevi, Gianluca
dc.contributor.authorJónsson, Hannes
dc.contributor.authorHäkkinen, Hannu
dc.contributor.authorFojt, Jakub
dc.contributor.authorKangsabanik, Jiban
dc.contributor.authorSødequist, Joachim
dc.contributor.authorLehtomäki, Jouko
dc.contributor.authorHeske, Julian
dc.contributor.authorEnkovaara, Jussi
dc.contributor.authorWinther, Kirsten Trøstrup
dc.contributor.authorDulak, Marcin
dc.contributor.authorMelander, Marko M.
dc.contributor.authorOvesen, Martin
dc.contributor.authorLouhivuori, Martti
dc.contributor.authorWalter, Michael
dc.contributor.authorGjerding, Morten
dc.contributor.authorLopez-Acevedo, Olga
dc.contributor.authorErhart, Paul
dc.contributor.authorWarmbier, Robert
dc.contributor.authorWürdemann, Rolf
dc.contributor.authorKaappa, Sami
dc.contributor.authorLatini, Simone
dc.contributor.authorBoland, Tara Maria
dc.contributor.authorBligaard, Thomas
dc.contributor.authorSkovhus, Thorbjørn
dc.contributor.authorSusi, Toma
dc.contributor.authorMaxson, Tristan
dc.contributor.authorRossi, Tuomas
dc.contributor.authorChen, Xi
dc.contributor.authorSchmerwitz, Yorick Leonard A.
dc.contributor.authorSchiøtz, Jakob
dc.contributor.authorOlsen, Thomas
dc.contributor.authorJacobsen, Karsten Wedel
dc.contributor.authorThygesen, Kristian Sommer
dc.date.accessioned2024-03-19T12:32:20Z
dc.date.available2024-03-19T12:32:20Z
dc.date.issued2024
dc.identifier.citationMortensen, J. J., Larsen, A. H., Kuisma, M., Ivanov, A. V., Taghizadeh, A., Peterson, A., Haldar, A., Dohn, A. O., Schäfer, C., Jónsson, E. Ö., Hermes, E. D., Nilsson, F. A., Kastlunger, G., Levi, G., Jónsson, H., Häkkinen, H., Fojt, J., Kangsabanik, J., Sødequist, J., . . . Thygesen, K. S. (2024). GPAW : An open Python package for electronic structure calculations. <i>Journal of Chemical Physics</i>, <i>160</i>(9), Article 092503. <a href="https://doi.org/10.1063/5.0182685" target="_blank">https://doi.org/10.1063/5.0182685</a>
dc.identifier.otherCONVID_207532283
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/93971
dc.description.abstractWe review the GPAW open-source Python package for electronic structure calculations. GPAW is based on the projector-augmented wave method and can solve the self-consistent density functional theory (DFT) equations using three different wave-function representations, namely real-space grids, plane waves, and numerical atomic orbitals. The three representations are complementary and mutually independent and can be connected by transformations via the real-space grid. This multi-basis feature renders GPAW highly versatile and unique among similar codes. By virtue of its modular structure, the GPAW code constitutes an ideal platform for the implementation of new features and methodologies. Moreover, it is well integrated with the Atomic Simulation Environment (ASE), providing a flexible and dynamic user interface. In addition to ground-state DFT calculations, GPAW supports many-body GW band structures, optical excitations from the Bethe–Salpeter Equation, variational calculations of excited states in molecules and solids via direct optimization, and real-time propagation of the Kohn–Sham equations within time-dependent DFT. A range of more advanced methods to describe magnetic excitations and non-collinear magnetism in solids are also now available. In addition, GPAW can calculate non-linear optical tensors of solids, charged crystal point defects, and much more. Recently, support for graphics processing unit (GPU) acceleration has been achieved with minor modifications to the GPAW code thanks to the CuPy library. We end the review with an outlook, describing some future plans for GPAW.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.ispartofseriesJournal of Chemical Physics
dc.rightsCC BY 4.0
dc.subject.otherdensity functional theory
dc.subject.otherelectronic structure methods
dc.subject.otherelectronic band structure
dc.subject.otherprojector augmented wave method
dc.subject.otherKohn-Sham equation
dc.subject.otherprogramming languages
dc.subject.otheroptical properties
dc.subject.otherBethe-Salpeter equation
dc.titleGPAW : An open Python package for electronic structure calculations
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202403192485
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.laitosDepartment of Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0021-9606
dc.relation.numberinseries9
dc.relation.volume160
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 Author(s)
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber338228
dc.subject.ysosähkökemia
dc.subject.ysooptiset ominaisuudet
dc.subject.ysomagnetismi
dc.subject.ysoavoin lähdekoodi
dc.subject.ysonanohiukkaset
dc.subject.ysoPython
dc.subject.ysolaskennallinen kemia
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysosimulointi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p8093
jyx.subject.urihttp://www.yso.fi/onto/yso/p25870
jyx.subject.urihttp://www.yso.fi/onto/yso/p7808
jyx.subject.urihttp://www.yso.fi/onto/yso/p17089
jyx.subject.urihttp://www.yso.fi/onto/yso/p23451
jyx.subject.urihttp://www.yso.fi/onto/yso/p13019
jyx.subject.urihttp://www.yso.fi/onto/yso/p23053
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p4787
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.datasethttps://gitlab.com/jensj/gpaw-paper-2023
dc.relation.doi10.1063/5.0182685
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundinginformationK.S.T. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program Grant No. 773122 (LIMA) and Grant Agreement No. 951786 (NOMAD CoE). K.S.T. is a Villum Investigator supported by VILLUM FONDEN (Grant No. 37789). Funding for A.O.D., G.L., and Y.L.A.S. was provided by the Icelandic Research Fund (Grant Nos. 196279, 217734, and 217751, respectively). F.N. has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 899987. M.M.M. was supported by the Academy of Finland (Grant No. 338228). T.O. acknowledges support from the Villum Foundation Grant No. 00029378. S.K. and K.W.J. acknowledge support from the VILLUM Center for Science of Sustainable Fuels and Chemicals, which is funded by the VILLUM Fonden research (Grant No. 9455). T.B. was funded by the Danish National Research Foundation (DNRF Grant No. 146). J.S. acknowledges funding from the Independent Research Fund Denmark (DFF-FTP) through Grant No. 9041-00161B. C.S. acknowledges support from the Swedish Research Council (VR) through Grant No. 2016-06059 and funding from the Horizon Europe research and innovation program of the European Union under the Marie Skłodowska-Curie Grant Agreement No. 101065117. Partially funded by the European Union. The views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or REA. Neither the European Union nor the granting authority can be held responsible for them. T.S. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 756277-ATMEN). O.L.-A. has been supported by Minciencias and the University of Antioquia (Colombia). K.T.W. was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, Catalysis Science Program, and the SUNCAT Center for Interface Science and Catalysis. G.K. acknowledges funding from V-Sustain: The VILLUM Centre for the Science of Sustainable Fuels and Chemicals (Grant No. 9455). Additional funding: Knut and Alice Wallenberg Foundation (Grant No. 2019.0140; J.F. and P.E.), the Swedish Research Council (Grant No. 2020-04935; J.F. and P.E.), the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 101065117 (C.S.). Computations and code development work have been enabled by the resources provided by the Niflheim Linux cluster supercomputer installed at the Department of Physics at the Technical University of Denmark, CSC–IT Center for Science, Finland, through national supercomputers and through access to the LUMI supercomputer owned by the EuroHPC Joint Undertaking, and the National Academic Infrastructure for Supercomputing in Sweden (NAISS) at NSC, PDC, and C3SE, partially funded by the Swedish Research Council through Grant Agreement No. 2022-06725. We gratefully acknowledge these organizations for providing computational resources and facilities.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0