Näytä suppeat kuvailutiedot

dc.contributor.authorGrahn, Hilkka
dc.contributor.authorKujala, Tuomo
dc.contributor.authorSilvennoinen, Johanna
dc.contributor.authorLeppänen, Aino
dc.contributor.authorSaariluoma, Pertti
dc.date.accessioned2024-02-27T12:13:53Z
dc.date.available2024-02-27T12:13:53Z
dc.date.issued2020
dc.identifier.citationGrahn, H., Kujala, T., Silvennoinen, J., Leppänen, A., & Saariluoma, P. (2020). Expert Drivers’ Prospective Thinking-Aloud to Enhance Automated Driving Technologies : Investigating Uncertainty and Anticipation in Traffic. <i>Accident Analysis and Prevention</i>, <i>146</i>, Article 105717. <a href="https://doi.org/10.1016/j.aap.2020.105717" target="_blank">https://doi.org/10.1016/j.aap.2020.105717</a>
dc.identifier.otherCONVID_41776282
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/93693
dc.description.abstractCurrent automated driving technology cannot cope in numerous conditions that are basic daily driving situations for human drivers. Previous studies show that profound understanding of human drivers’ capability to interpret and anticipate traffic situations is required in order to provide similar capacities for automated driving technologies. There is currently not enough a priori understanding of these anticipatory capacities for safe driving applicable to any given driving situation. To enable the development of safer, more economical, and more comfortable automated driving experience, expert drivers’ anticipations and related uncertainties were studied on public roads. First, driving instructors’ expertise in anticipating traffic situations was validated with a hazard prediction test. Then, selected driving instructors drove in real traffic while thinking aloud anticipations of unfolding events. The results indicate sources of uncertainty and related adaptive and social behaviors in specific traffic situations and environments. In addition, the applicability of these anticipatory capabilities to current automated driving technology is discussed. The presented method and results can be utilized to enhance automated driving technologies by indicating their potential limitations and may enable improved situation awareness for automated vehicles. Furthermore, the produced data can be utilized for recognizing such upcoming situations, in which the human should take over the vehicle, to enable timely take-over requests.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesAccident Analysis and Prevention
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherautomated driving
dc.subject.otherexpert driver
dc.subject.otherprospective thinking-aloud
dc.subject.othertraffic safety
dc.subject.otheruncertainty
dc.subject.otheranticipation
dc.titleExpert Drivers’ Prospective Thinking-Aloud to Enhance Automated Driving Technologies : Investigating Uncertainty and Anticipation in Traffic
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202402272165
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineKognitiotiedefi
dc.contributor.oppiaineCognitive Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0001-4575
dc.relation.volume146
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 Elsevier Ltd.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber327354
dc.subject.ysoepävarmuus
dc.subject.ysoliikenneturvallisuus
dc.subject.ysoautonkuljettajat
dc.subject.ysoennakointi
dc.subject.ysoasiantuntijat
dc.subject.ysorobottiautot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p1722
jyx.subject.urihttp://www.yso.fi/onto/yso/p517
jyx.subject.urihttp://www.yso.fi/onto/yso/p3003
jyx.subject.urihttp://www.yso.fi/onto/yso/p17353
jyx.subject.urihttp://www.yso.fi/onto/yso/p12104
jyx.subject.urihttp://www.yso.fi/onto/yso/p29485
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.aap.2020.105717
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramStrategic research programmes, AoFen
jyx.fundingprogramStrategisen tutkimuksen ohjelmat STN, SAfi
jyx.fundinginformationThe research was partly funded by the project Ethical AI for the Governance of the Society (ETAIROS), funded by Academy of Finland.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0