dc.contributor.author | Chen, Zhonghua | |
dc.contributor.author | Wang, Hongkai | |
dc.contributor.author | Cong, Fengyu | |
dc.contributor.author | Kettunen, Lauri | |
dc.date.accessioned | 2024-02-15T09:44:36Z | |
dc.date.available | 2024-02-15T09:44:36Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Chen, Z., Wang, H., Cong, F., & Kettunen, L. (2022). Low-Dose Mouse Micro-CT Image Segmentation Based on Multi-Resolution Multi-Organ Shape Prior Knowledge Model. In <i>CIPAE 2022 : 2022 International Conference on Computers, Information Processing and Advanced Education </i> (pp. 349-353). IEEE. <a href="https://doi.org/10.1109/cipae55637.2022.00079" target="_blank">https://doi.org/10.1109/cipae55637.2022.00079</a> | |
dc.identifier.other | CONVID_176925513 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/93417 | |
dc.description.abstract | Automatic segmentation of computed tomography (CT) images of mice is a step toward computer-assisted preclinical image analysis. Due to the low image quality of micro-CT images, fully-automatic methods may not achieve robust segmentation. For this reason, human interventions are needed to achieve higher segmentation accuracy. In this paper, we propose a human interactive segmentation method incorporating anatomical prior knowledge for multiple abdominal organs in mouse micro-CT images. The method automatically fits a multi-organ shape model to the user-sketched partial boundary contours. Segmentation accuracy is validated by comparing the proposed method against existing shape models. The robustness of our proposed method was evaluated with different users. Finally, the results suggest the proposed method generates accurate segmentation with good robustness. | en |
dc.format.extent | 492 | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | IEEE | |
dc.relation.ispartof | CIPAE 2022 : 2022 International Conference on Computers, Information Processing and Advanced Education | |
dc.rights | In Copyright | |
dc.subject.other | image segmentation | |
dc.subject.other | image resolution | |
dc.subject.other | shape | |
dc.subject.other | computed tomography | |
dc.subject.other | computational modeling | |
dc.subject.other | lung | |
dc.subject.other | information processing | |
dc.title | Low-Dose Mouse Micro-CT Image Segmentation Based on Multi-Resolution Multi-Organ Shape Prior Knowledge Model | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-202402151895 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Laskennallinen tiede | fi |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Secure Communications Engineering and Signal Processing | fi |
dc.contributor.oppiaine | Tekniikka | fi |
dc.contributor.oppiaine | Computing, Information Technology and Mathematics | fi |
dc.contributor.oppiaine | Computational Science | en |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.contributor.oppiaine | Secure Communications Engineering and Signal Processing | en |
dc.contributor.oppiaine | Engineering | en |
dc.contributor.oppiaine | Computing, Information Technology and Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 978-1-6654-6813-8 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 349-353 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2022 IEEE | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | International Conference on Computers, Information Processing and Advanced Education | |
dc.subject.yso | 3D-mallinnus | |
dc.subject.yso | koe-eläinmallit | |
dc.subject.yso | anatomia | |
dc.subject.yso | segmentointi | |
dc.subject.yso | keuhkot | |
dc.subject.yso | tietokonetomografia | |
dc.subject.yso | kuvantaminen | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26739 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28104 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1523 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18246 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3185 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p20535 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3532 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1109/cipae55637.2022.00079 | |
jyx.fundinginformation | We thank the Molecular Imaging Center of the University of California, Los Angeles for providing 98 mouse micro-CT images to support our work. We also thank the general program of the National Natural Science Fund of China (No. 81971693, 81401475), the Science and Technology Innovation Fund of Dalian City (2018J12GX042), the Fundamental Research Funds for the Central Universities (DUT19JC01), and the scholarships from China Scholarship Council (No. 201806060163). | |
dc.type.okm | A4 | |