Show simple item record

dc.contributor.authorChen, Zhonghua
dc.contributor.authorWang, Hongkai
dc.contributor.authorCong, Fengyu
dc.contributor.authorKettunen, Lauri
dc.date.accessioned2024-02-15T09:44:36Z
dc.date.available2024-02-15T09:44:36Z
dc.date.issued2022
dc.identifier.citationChen, Z., Wang, H., Cong, F., & Kettunen, L. (2022). Low-Dose Mouse Micro-CT Image Segmentation Based on Multi-Resolution Multi-Organ Shape Prior Knowledge Model. In <i>CIPAE 2022 : 2022 International Conference on Computers, Information Processing and Advanced Education </i> (pp. 349-353). IEEE. <a href="https://doi.org/10.1109/cipae55637.2022.00079" target="_blank">https://doi.org/10.1109/cipae55637.2022.00079</a>
dc.identifier.otherCONVID_176925513
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/93417
dc.description.abstractAutomatic segmentation of computed tomography (CT) images of mice is a step toward computer-assisted preclinical image analysis. Due to the low image quality of micro-CT images, fully-automatic methods may not achieve robust segmentation. For this reason, human interventions are needed to achieve higher segmentation accuracy. In this paper, we propose a human interactive segmentation method incorporating anatomical prior knowledge for multiple abdominal organs in mouse micro-CT images. The method automatically fits a multi-organ shape model to the user-sketched partial boundary contours. Segmentation accuracy is validated by comparing the proposed method against existing shape models. The robustness of our proposed method was evaluated with different users. Finally, the results suggest the proposed method generates accurate segmentation with good robustness.en
dc.format.extent492
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofCIPAE 2022 : 2022 International Conference on Computers, Information Processing and Advanced Education
dc.rightsIn Copyright
dc.subject.otherimage segmentation
dc.subject.otherimage resolution
dc.subject.othershape
dc.subject.othercomputed tomography
dc.subject.othercomputational modeling
dc.subject.otherlung
dc.subject.otherinformation processing
dc.titleLow-Dose Mouse Micro-CT Image Segmentation Based on Multi-Resolution Multi-Organ Shape Prior Knowledge Model
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202402151895
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingfi
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineComputing, Information Technology and Mathematicsfi
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingen
dc.contributor.oppiaineEngineeringen
dc.contributor.oppiaineComputing, Information Technology and Mathematicsen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-1-6654-6813-8
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange349-353
dc.type.versionacceptedVersion
dc.rights.copyright© 2022 IEEE
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceInternational Conference on Computers, Information Processing and Advanced Education
dc.subject.yso3D-mallinnus
dc.subject.ysokoe-eläinmallit
dc.subject.ysoanatomia
dc.subject.ysosegmentointi
dc.subject.ysokeuhkot
dc.subject.ysotietokonetomografia
dc.subject.ysokuvantaminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p26739
jyx.subject.urihttp://www.yso.fi/onto/yso/p28104
jyx.subject.urihttp://www.yso.fi/onto/yso/p1523
jyx.subject.urihttp://www.yso.fi/onto/yso/p18246
jyx.subject.urihttp://www.yso.fi/onto/yso/p3185
jyx.subject.urihttp://www.yso.fi/onto/yso/p20535
jyx.subject.urihttp://www.yso.fi/onto/yso/p3532
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/cipae55637.2022.00079
jyx.fundinginformationWe thank the Molecular Imaging Center of the University of California, Los Angeles for providing 98 mouse micro-CT images to support our work. We also thank the general program of the National Natural Science Fund of China (No. 81971693, 81401475), the Science and Technology Innovation Fund of Dalian City (2018J12GX042), the Fundamental Research Funds for the Central Universities (DUT19JC01), and the scholarships from China Scholarship Council (No. 201806060163).
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright