Show simple item record

dc.contributor.authorMelander, Marko M.
dc.contributor.authorWu, Tongwei
dc.contributor.authorWeckman, Timo
dc.contributor.authorHonkala, Karoliina
dc.date.accessioned2024-01-22T11:14:38Z
dc.date.available2024-01-22T11:14:38Z
dc.date.issued2024
dc.identifier.citationMelander, M. M., Wu, T., Weckman, T., & Honkala, K. (2024). Constant inner potential DFT for modelling electrochemical systems under constant potential and bias. <i>npj Computational Materials</i>, <i>10</i>, Article 5. <a href="https://doi.org/10.1038/s41524-023-01184-4" target="_blank">https://doi.org/10.1038/s41524-023-01184-4</a>
dc.identifier.otherCONVID_197770962
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/92963
dc.description.abstractElectrochemical systems play a decisive role in, e.g. clean energy conversion but understanding their complex chemistry remains an outstanding challenge. Constant potential and grand canonical ensemble (GCE) simulations are indispensable for unraveling the properties of electrochemical processes as a function of the electrode potential. Currently, GCE calculations performed at the density functional theory (DFT) level require fixing the Fermi level within the simulation cell. Here, we illustrate that this method is inadequate when modeling outer sphere reactions and a biased two-electrode cell. For these systems, the Fermi level obtained from DFT calculations does not accurately present the experimentally controlled electrode potential or describe the thermodynamic independent variable in GCE-DFT. To address this limitation, we developed and implemented a constant inner potential (CIP) method offering a more robust and general approach to conducting GCE-DFT simulations of electrochemical systems under constant potential or bias conditions. The primary advantage of CIP is that it uses the local electrode inner potential as the thermodynamic parameter for the electrode potential, as opposed to the global Fermi level. Through numerical and analytical studies, we demonstrate that the CIP and Fermi level GCE-DFT approaches are equivalent for metallic electrodes and inner-sphere reactions. However, CIP proves to be more versatile, as it can be applied to outer-sphere and two-electrode systems, addressing the limitations of the constant Fermi-level approach in these scenarios. Altogether, the CIP approach stands out as a general and efficient GCE-DFT method simulating electrochemical interfaces from first principles.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.ispartofseriesnpj Computational Materials
dc.rightsCC BY 4.0
dc.subject.otherelectrochemistry
dc.subject.othertheoretical chemistry
dc.titleConstant inner potential DFT for modelling electrochemical systems under constant potential and bias
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202401221455
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2057-3960
dc.relation.volume10
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2024
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber338228
dc.relation.grantnumber307853
dc.relation.grantnumber317739
dc.subject.ysosähkökemia
dc.subject.ysokemia
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p8093
jyx.subject.urihttp://www.yso.fi/onto/yso/p1801
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1038/s41524-023-01184-4
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationAcademy of Finland: 317739, 307853, 338228
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0