Näytä suppeat kuvailutiedot

dc.contributor.authorIllana, A.
dc.contributor.authorPérez-Vidal, R.M.
dc.contributor.authorStramaccioni, D.
dc.contributor.authorValiente-Dobón, J.J.
dc.contributor.authorRodriguez, T.R.
dc.contributor.authorRobledo, L.M.
dc.contributor.authorPoves, A.
dc.contributor.authorAuranen, K.
dc.contributor.authorBeliuskina, O.
dc.contributor.authorDelafosse, C.
dc.contributor.authorEronen, T.
dc.contributor.authorGe, Z.
dc.contributor.authorGeldhof, S.
dc.contributor.authorGins, W.
dc.contributor.authorGrahn, T.
dc.contributor.authorGreenlees, P.T.
dc.contributor.authorJoukainen, H.
dc.contributor.authorJulin, R.
dc.contributor.authorJutila, H.
dc.contributor.authorKankainen, A.
dc.contributor.authorLeino, M.
dc.contributor.authorLouko, J.
dc.contributor.authorLuoma, M.
dc.contributor.authorNesterenko, D.
dc.contributor.authorOjala, J.
dc.contributor.authorPakarinen, J.
dc.contributor.authorRahkila, P.
dc.contributor.authorRuotsalainen, P.
dc.contributor.authorSandzelius, M.
dc.contributor.authorSarén, J.
dc.contributor.authorUusitalo, J.
dc.contributor.authorZimba, G.L.
dc.date.accessioned2024-01-12T09:17:56Z
dc.date.available2024-01-12T09:17:56Z
dc.date.issued2024
dc.identifier.citationIllana, A., Pérez-Vidal, R.M., Stramaccioni, D., Valiente-Dobón, J.J., Rodriguez, T.R., Robledo, L.M., Poves, A., Auranen, K., Beliuskina, O., Delafosse, C., Eronen, T., Ge, Z., Geldhof, S., Gins, W., Grahn, T., Greenlees, P.T., Joukainen, H., Julin, R., Jutila, H., . . . Zimba, G.L. (2024). Octupole correlations in the N = Z + 2 = 56 110Xe nucleus. <i>Physics Letters B</i>, <i>848</i>, Article 138371. <a href="https://doi.org/10.1016/j.physletb.2023.138371" target="_blank">https://doi.org/10.1016/j.physletb.2023.138371</a>
dc.identifier.otherCONVID_194822867
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/92763
dc.description.abstractThis letter reports on the first observation of an octupole band in the neutron-deficient (N = Z + 2) nucleus 110Xe. The 110Xe nuclei were produced via the 54Fe(58Ni,2n) fusion-evaporation reaction. The emitted γ rays were detected using the jurogam 3 γ-ray spectrometer, while the fusion-evaporation residues were separated with the MARA separator at the Accelerator Laboratory of the University of Jyvaskyl ¨ a, Finland. The experimental observation of the ¨ low-lying 3− and 5− states and inter-band E1 transitions between the ground-state band and the octupole band proves the importance of octupole correlations in this region. These new experimental data combined with theoretical calculations using the symmetry-conserving configuration-mixing method, based on a Gogny energy density functional, have been interpreted as an evidence of enhanced octupole correlations in neutron-deficient xenon isotopes.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesPhysics Letters B
dc.rightsCC BY 4.0
dc.subject.otheroctupole deformations
dc.subject.other110Xe
dc.subject.otherN = Z = 56 region
dc.subject.otherfusion evaporation reactions
dc.titleOctupole correlations in the N = Z + 2 = 56 110Xe nucleus
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202401121264
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineKiihdytinlaboratoriofi
dc.contributor.oppiaineAccelerator Laboratoryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0370-2693
dc.relation.volume848
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber771036
dc.relation.grantnumber771036
dc.relation.grantnumber307685
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/771036/EU//MAIDEN
dc.subject.ysoydinfysiikka
dc.subject.ysoksenon
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p14759
jyx.subject.urihttp://www.yso.fi/onto/yso/p17757
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.physletb.2023.138371
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuropean Commissionen
dc.relation.funderResearch Council of Finlanden
jyx.fundingprogramERC Consolidator Grantfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramERC Consolidator Granten
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationThis work was supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 847635, by the Academy of Finland (Finland) Grant No. 307685, by the European Union's Horizon 2020 research and innovation program under grant agreement No. 771036 (ERC CoG MAIDEN), by the Spanish MICINN under PGC2018-094583-B-I00 and PID2021-127890NB-I00, by MCIN/AEI/ 10.13039/501100011033 Spain with grant PID2020-118265GB-C42, by Generalitat Valenciana, Spain with grants PROMETEO/2019/005 and CIAPOS/2021/114 and by the EU FEDER funds. The authors acknowledge the support of GAMMAPOOL for the loan of the jurogam 3 detectors and the support of the GSI-Darmstadt computing facility.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0