Näytä suppeat kuvailutiedot

dc.contributor.authorTurtiainen, Hannu
dc.contributor.authorCostin, Andrei
dc.contributor.authorHämäläinen, Timo
dc.contributor.editorSipola, Tuomo
dc.contributor.editorKokkonen, Tero
dc.contributor.editorKarjalainen, Mika
dc.date.accessioned2024-01-11T12:04:11Z
dc.date.available2024-01-11T12:04:11Z
dc.date.issued2023
dc.identifier.citationTurtiainen, H., Costin, A., & Hämäläinen, T. (2023). Defensive Machine Learning Methods and the Cyber Defence Chain. In T. Sipola, T. Kokkonen, & M. Karjalainen (Eds.), <i>Artificial Intelligence and Cybersecurity : Theory and Applications</i> (pp. 147-163). Springer. <a href="https://doi.org/10.1007/978-3-031-15030-2_7" target="_blank">https://doi.org/10.1007/978-3-031-15030-2_7</a>
dc.identifier.otherCONVID_164483875
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/92691
dc.description.abstractCyberattacks are now occurring on a daily basis. As attacks and breaches are so frequent, and the fact that human work hours do not scale infinitely, the cybersecurity industry needs innovative and scalable tools and techniques to automate certain cybersecurity defensive tasks in order to keep up. The variety, the complex nature of the attacks, and the effectiveness of 0-day attacks mean that conventional tools are not adequate for securing complex networks with large numbers of users and endpoints with differing identities, behavior, and needs. Machine learning and artificial intelligence aid the creators of security tools in their tasks by introducing adaptive environment possibilities, customizability, and the ability to learn from past attacks and predict future attack attempts. In this chapter, we address innovations in machine learning, deep learning, and artificial intelligence within the defensive cybersecurity fields. We structure this chapter inline with the OWASP Cyber Defense Matrix in order to cover adequate grounds on this broad topic, and refer occasionally to the more granular MITRE D3FEND taxonomy whenever relevant.en
dc.format.extent301
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofArtificial Intelligence and Cybersecurity : Theory and Applications
dc.rightsIn Copyright
dc.subject.othermachine learning methods
dc.subject.othercyber defence chain
dc.titleDefensive Machine Learning Methods and the Cyber Defence Chain
dc.typebook part
dc.identifier.urnURN:NBN:fi:jyu-202401111192
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/BookItem
dc.relation.isbn978-3-031-15029-6
dc.type.coarhttp://purl.org/coar/resource_type/c_3248
dc.description.reviewstatuspeerReviewed
dc.format.pagerange147-163
dc.type.versionacceptedVersion
dc.rights.copyright© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
dc.rights.accesslevelopenAccessfi
dc.type.publicationbookPart
dc.subject.ysotietoturva
dc.subject.ysokoneoppiminen
dc.subject.ysokyberturvallisuus
dc.subject.ysoverkkohyökkäykset
dc.subject.ysotekoäly
dc.subject.ysosyväoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p5479
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p26189
jyx.subject.urihttp://www.yso.fi/onto/yso/p27466
jyx.subject.urihttp://www.yso.fi/onto/yso/p2616
jyx.subject.urihttp://www.yso.fi/onto/yso/p39324
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/978-3-031-15030-2_7
dc.type.okmA3


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright