Näytä suppeat kuvailutiedot

dc.contributor.authorTiihonen, Juha
dc.contributor.authorHäkkinen, Hannu
dc.date.accessioned2024-01-02T08:12:27Z
dc.date.available2024-01-02T08:12:27Z
dc.date.issued2023
dc.identifier.citationTiihonen, J., & Häkkinen, H. (2023). Towards structural optimization of gold nanoclusters with quantum Monte Carlo. <i>Journal of Chemical Physics</i>, <i>159</i>(17), Article 174301. <a href="https://doi.org/10.1063/5.0174383" target="_blank">https://doi.org/10.1063/5.0174383</a>
dc.identifier.otherCONVID_194292700
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/92522
dc.description.abstractWe study the prospects of using quantum Monte Carlo techniques (QMC) to optimize the electronic wavefunctions and atomic geometries of gold compounds. Complex gold nanoclusters are widely studied for diverse biochemical applications, but the dynamic correlation and relativistic effects in gold set the bar high for reliable, predictive simulation methods. Here we study selected ground state properties of fewatom gold clusters by using density functional theory (DFT) and various implementations of the variational Monte Carlo (VMC) and diffusion Monte Carlo. We show that the QMC methods mitigate the exchange-correlation (XC) approximation made in the DFT approach: the average QMC results are more accurate and significantly more consistent than corresponding DFT results based on different XC functionals. Furthermore, we use demonstrate structural optimization of selected thiolated gold clusters with between 1 and 3 gold atoms using VMC forces. The optimization workflow is demonstrably consistent, robust, and its computational cost scales with n b , where b < 3 and n is the system size. We discuss the implications of these results while laying out steps for further developments.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAIP Publishing
dc.relation.ispartofseriesJournal of Chemical Physics
dc.rightsIn Copyright
dc.titleTowards structural optimization of gold nanoclusters with quantum Monte Carlo
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202401021026
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0021-9606
dc.relation.numberinseries17
dc.relation.volume159
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 Author(s). Published under an exclusive license by AIP Publishing.
dc.rights.accesslevelopenAccessfi
dc.subject.ysoklusterit
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysonanohiukkaset
dc.subject.ysokulta
dc.subject.ysoMonte Carlo -menetelmät
dc.subject.ysooptimointi
dc.subject.ysonanorakenteet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p18755
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p23451
jyx.subject.urihttp://www.yso.fi/onto/yso/p19016
jyx.subject.urihttp://www.yso.fi/onto/yso/p6361
jyx.subject.urihttp://www.yso.fi/onto/yso/p13477
jyx.subject.urihttp://www.yso.fi/onto/yso/p25315
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1063/5.0174383
jyx.fundinginformationThe work has been performed under the Project HPC-EUROPA3 (Grant No. INFRAIA-2016-1- 730897), with the support of the EC Research Innovation Action under the H2020 Programme. We thank SURF (www.surf.nl) for the support in using the National Supercomputer Snellius. We acknowledge grants of computer capacity from the Finnish Grid and Cloud Infrastructure (persistent identifier Grant No. urn:nbn:fi:researchinfras-2016072533). The authors also wish to acknowledge CSC–IT Center for Science, Finland, for computational resources. This work was supported by the Academy of Finland.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright