Theoretical studies on spectroscopy and atomic dynamics in rare gas solids
Authors
Date
2001Challenges of chemical dynamics have been encountered in the present study consisting of five publications, where a theoretical approach has been chosen to clarify the observations gathered by magnetic and optical spectroscopies in solid rare gases. Detailed understanding of the events at a microscopic level is necessitated for control over the basic processes occurring in the solids. The knowledge of atom trapping sites and dynamics gained here is of both practical and academic importance in this research field of chemical physics. In this thesis a combined quantum chemical - classical mechanics approach is adopted. First, accurate ab initio electronic structure methods are used for the atom pairs present in the system in order to parametrize the interaction energies and spectroscopic quantities. Second, the pairwise information is used in molecular dynamics simulations, which yields the time-averaged effects of the surrounding medium on the dopant atom. The electron paramagnetic resonance spectra of H, Li, Na, and B atoms in rare gas solids are simulated by a novel combination of computational tools, and the results agree well with the experiments. Definite assignments for trapping in various lattice geometries with distinct symmetries and volumes have been achieved, and the developed methodology seems promising for future use in studies of more complex cases. Atomic dynamics plays a crucial role in the optical studies, and the present simulations have been successful in associating the experimental observations and the temperature dependent atomic motion to specific trapping configurations of matrix isolated B and S atoms. In particular, both thermal and photoinduced recombinant emissions of S2 have been interpreted with the aid of simulations, and the B atom optical transitions perturbed in the solids have been assigned on the basis of the knowledge of computed otential
energy curves, simulated energetics, and combinatory magnetic effects.
...
ISBN
978-951-39-9871-4ISSN Search the Publication Forum
0357-346XContains publications
- Artikkeli I: Kiljunen, T., Kunttu, H., & Eloranta, J. (1999). Ab initio and molecular-dynamics studies on rare gas hydrides: Potential energy curves, isotropic hyperfine properties, and matrix cage trapping of atomic hydrogen. The Journal of Chemical Physics, 110(24), 11814-22. DOI: 10.1063/1.479173
- Artikkeli II: Ahokas, J., Eloranta, J., Kiljunen, T., & Kunttu, H. (2000). Theoretical analysis of alkali metal trapping sites in rare gas matrices. The Journal of Chemical Physics, 112(112), 2420-2426. DOI: 10.1063/1.480825
- Artikkeli III: Kiljunen, T., Kunttu, H., Eloranta, J., Pettersson, M., Khriachtchev, L., & Räsänen, M. (2000). Electronic structure and short-range recombination dynamics of S2 in solid argon. The Journal of Chemical Physics, 112(17), 7475-7483. DOI: 10.1063/1.481345
- Artikkeli IV: Kiljunen, T., Ahokas, J., Eloranta, J., & Kunttu, H. (2001). Magnetic properties of atomic boron in rare gas matrices: an electron paramagnetic resonance study with ab initio and diatomics-in-molecules molecular dynamics analysis. The Journal of Chemical Physics, 114(16), 7144-7156. DOI: 10.1063/1.1360796
- Artikkeli V: Kiljunen, T., Ahokas, J., Eloranta, J., & Kunttu, H. (2001). Optical properties of atomic boron in rare gas matrices: an ultraviolet-absorption/laser induced fluorescence study with ab initio and diatomics-in-molecules molecular dynamics analysis. The Journal of Chemical Physics, 114(16), 7157-7165. DOI: 10.1063/1.1360797
Metadata
Show full item recordCollections
- Väitöskirjat [3602]
License
Related items
Showing items with similar title or keywords.
-
Theoretical investigation of paramagnetic group 13 diazabutadiene radicals: insights into the prediction and interpretation of EPR spectroscopy parameters
Tuononen, Heikki; Armstrong, Andrea (RSC, 2006)The electronic structures and the spin density distributions of the group 13 1,4-diaza(1,3)butadiene (DAB) radicals [(R-DAB)2M]˙, [(R-DAB)MX2]˙ and {[(R-DAB)MX]2}˙˙ (M = Al, Ga, In; X = F, Cl, Br, I; R = H, Me, tBu, Ph) ... -
Matrix Isolation FTIR and Theoretical Study of Weakly Bound Complexes of Isocyanic Acid with Nitrogen
Krupa, Justyna; Wierzejewska, Maria; Lundell, Jan (MDPI AG, 2022)Weak complexes of isocyanic acid (HNCO) with nitrogen were studied computationally employing MP2, B2PLYPD3 and B3LYPD3 methods and experimentally by FTIR matrix isolation technique. The results show that HNCO interacts ... -
Experimental FTIR-MI and Theoretical Studies of Isocyanic Acid Aggregates
Krupa, Justyna; Wierzejewska, Maria; Lundell, Jan (MDPI AG, 2023)Homoaggregates of isocyanic acid (HNCO) were studied using FTIR spectroscopy combined with a low-temperature matrix isolation technique and quantum chemical calculations. Computationally, the structures of the HNCO dimers ... -
Theoretical Investigation of Paramagnetic Diazabutadiene Gallium(III)−Pnictogen Complexes: Insights into the Interpretation and Simulation of Electron Paramagnetic Resonance Spectra
Tuononen, Heikki; Armstrong, Andrea (ACS, 2005)The electronic structures and the spin density distributions of the paramagnetic gallium 1,4-diaza(1,3)butadiene (DAB) model systems {(tBu-DAB)Ga(I)[Pn(SiH3)2]}• and the related dipnictogen species {(tBu-DAB)Ga[Pn(SiH3)2]2}• ... -
Experimental and theoretical investigation of hydrogen bonded complexes between glycolic acid and water
Krupa, Justyna; Kosendiak, Iwona; Wierzejewska, Maria; Lundell, Jan (Elsevier, 2025)Theoretical MP2 and B3LYPD3 calculations, as well as experimental matrix isolation infrared spectroscopy studies, were used to investigate the 1:1 complexes formed between glycolic acid and water. Out of five computationally ...