Näytä suppeat kuvailutiedot

dc.contributor.authorThe JUNO Collaboration
dc.date.accessioned2023-11-24T08:42:11Z
dc.date.available2023-11-24T08:42:11Z
dc.date.issued2023
dc.identifier.citationThe JUNO Collaboration. (2023). The JUNO experiment Top Tracker. <i>Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i>, <i>1057</i>, Article 168680. <a href="https://doi.org/10.1016/j.nima.2023.168680" target="_blank">https://doi.org/10.1016/j.nima.2023.168680</a>
dc.identifier.otherCONVID_184949837
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/92076
dc.description.abstractThe main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO’s water Cherenkov Detector and Central Detector, covering about 60% of the surface above them. The JUNO Top Tracker is constituted by the decommissioned OPERA experiment Target Tracker modules. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multianode photomultiplier tubes. Compared to the OPERA Target Tracker, the JUNO Top Tracker uses new electronics able to cope with the high rate produced by the high rock radioactivity compared to the one in Gran Sasso underground laboratory. This paper will present the new electronics and mechanical structure developed for the Top Tracker of JUNO along with its expected performance based on the current detector simulation.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
dc.rightsIn Copyright
dc.subject.otherJUNO
dc.subject.othertop tracker
dc.subject.otherplastic scintillator
dc.subject.otherphotomultiplier
dc.subject.otherPMT
dc.subject.othermultianode
dc.subject.otherWLS fibre
dc.subject.otherneutrino
dc.subject.othermuons
dc.titleThe JUNO experiment Top Tracker
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202311248091
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiaineYdin- ja kiihdytinfysiikan huippuyksikköfi
dc.contributor.oppiainePhysicsen
dc.contributor.oppiaineCentre of Excellence in Nuclear and Accelerator Based Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0168-9002
dc.relation.volume1057
dc.type.versionacceptedVersion
dc.rights.copyright© 2023 Elsevier
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoilmaisimet
dc.subject.ysohiukkasfysiikka
dc.subject.ysotutkimuslaitteet
dc.subject.ysoneutriinot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p4220
jyx.subject.urihttp://www.yso.fi/onto/yso/p15576
jyx.subject.urihttp://www.yso.fi/onto/yso/p2440
jyx.subject.urihttp://www.yso.fi/onto/yso/p5219
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1016/j.nima.2023.168680
jyx.fundinginformationWe are grateful for the ongoing cooperation from the China General Nuclear Power Group. We acknowledge the supported of the Chinese Academy of Sciences, the National Key R&D Program of China, the CAS Center for Excellence in Particle Physics, Wuyi University, and the Tsung-Dao Lee Institute of Shanghai Jiao Tong University in China, the Institut National de Physique Nucléaire et de Physique de Particules (IN2P3) in France, the Istituto Nazionale di Fisica Nucleare (INFN) in Italy, the Italian-Chinese collaborative research program MAECI-NSFC, the Fond de la Recherche Scientifique (F.R.S-FNRS) and FWO under the “Excellence of Science – EOS” in Belgium, the Conselho Nacional de Desenvolvimento Científico e Tecnològico in Brazil, the Agencia Nacional de Investigacion y Desarrollo in Chile, the Charles University Research Centre and the Ministry of Education, Youth, and Sports in Czech Republic, the Deutsche Forschungsgemeinschaft (DFG), the Helmholtz Association, and the Cluster of Excellence PRISMA+ in Germany, the Joint Institute of Nuclear Research (JINR) and Lomonosov Moscow State University in Russia, the joint Russian Science Foundation (RSF) and National Natural Science Foundation of China (NSFC) research program, the MOST and MOE in Taiwan, the Chulalongkorn University and Suranaree University of Technology in Thailand, and the University of California at Irvine in USA. This work, in particular, was supported by the initiative of excellence IDEX-Unistra (ANR-10-IDEX-0002-02) and EUR-QMat (ANR-17-EURE-0024) from the French national program “investment for the future”, and by the Strategic Priority Research Program of the Chinese Academy of Sciences , Grant No. XDA10010300.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright