Näytä suppeat kuvailutiedot

dc.contributor.authorTikka, Santtu
dc.date.accessioned2023-11-22T09:40:23Z
dc.date.available2023-11-22T09:40:23Z
dc.date.issued2023
dc.identifier.citationTikka, S. (2023). Identifying Counterfactual Queries with the R Package cfid. <i>The R Journal</i>, <i>15</i>(2), 330-343. <a href="https://doi.org/10.32614/rj-2023-053" target="_blank">https://doi.org/10.32614/rj-2023-053</a>
dc.identifier.otherCONVID_194525492
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/92003
dc.description.abstractIn the framework of structural causal models, counterfactual queries describe events that concern multiple alternative states of the system under study. Counterfactual queries often take the form of “what if” type questions such as “would an applicant have been hired if they had over 10 years of experience, when in reality they only had 5 years of experience?” Such questions and counterfactual inference in general are crucial, for example when addressing the problem of fairness in decision-making. Because counterfactual events contain contradictory states of the world, it is impossible to conduct a randomized experiment to address them without making several restrictive assumptions. However, it is sometimes possible to identify such queries from observational and experimental data by representing the system under study as a causal model, and the available data as symbolic probability distributions. Shpitser and Pearl (2007) constructed two algorithms, called ID* and IDC*, for identifying counterfactual queries and conditional counterfactual queries, respectively. These two algorithms are analogous to the ID and IDC algorithms by Shpitser and Pearl (2006b,a) for identification of interventional distributions, which were implemented in R by Tikka and Karvanen (2017) in the causaleffect package. We present the R package cfid that implements the ID* and IDC* algorithms. Identification of counterfactual queries and the features of cfid are demonstrated via examples.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherTechnische Universität Wien
dc.relation.ispartofseriesThe R Journal
dc.rightsCC BY 4.0
dc.titleIdentifying Counterfactual Queries with the R Package cfid
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202311228020
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineTilastotiedefi
dc.contributor.oppiaineStatisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange330-343
dc.relation.issn2073-4859
dc.relation.numberinseries2
dc.relation.volume15
dc.type.versionpublishedVersion
dc.rights.copyright© Author 2023
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber331817
dc.subject.ysoalgoritmit
dc.subject.ysokausaliteetti
dc.subject.ysoR-kieli
dc.subject.ysopäättely
dc.subject.ysotodennäköisyyslaskenta
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p14524
jyx.subject.urihttp://www.yso.fi/onto/yso/p333
jyx.subject.urihttp://www.yso.fi/onto/yso/p24355
jyx.subject.urihttp://www.yso.fi/onto/yso/p5902
jyx.subject.urihttp://www.yso.fi/onto/yso/p4746
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.32614/rj-2023-053
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis work was supported by Academy of Finland grant number 331817.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0