dc.contributor.author | Ipp, Andreas | |
dc.contributor.author | Leuthner, Markus | |
dc.contributor.author | Müller, David I. | |
dc.contributor.author | Schlichting, Soeren | |
dc.contributor.author | Singh, Pragya | |
dc.contributor.editor | Rothkopf, A. | |
dc.contributor.editor | Brambilla, N. | |
dc.contributor.editor | Tolos, L. | |
dc.contributor.editor | Tranberg, A. | |
dc.contributor.editor | Kurkela, A. | |
dc.contributor.editor | Roehrich, D. | |
dc.contributor.editor | Andersen, J. O. | |
dc.contributor.editor | Tywoniuk, K. | |
dc.contributor.editor | Antonov, D. | |
dc.contributor.editor | Greensite, J. | |
dc.contributor.editor | Faber, M. | |
dc.contributor.editor | Schaefer, T. | |
dc.contributor.editor | Ghiglieri, J. | |
dc.contributor.editor | Goity, J. | |
dc.contributor.editor | Ketzer, B. | |
dc.contributor.editor | Constantinou, M. | |
dc.contributor.editor | Sazdjian, H. | |
dc.contributor.editor | Scimemi, I. | |
dc.contributor.editor | Stefanis, N. G. | |
dc.contributor.editor | Alford, M. | |
dc.contributor.editor | Blaschke, D. | |
dc.contributor.editor | Marton, J. | |
dc.contributor.editor | Schmitt, A. | |
dc.contributor.editor | Espriu, D. | |
dc.contributor.editor | Fodor, Z. | |
dc.contributor.editor | Pasechnik, R. | |
dc.contributor.editor | Rinaldi, E. | |
dc.contributor.editor | Vento V. | |
dc.date.accessioned | 2023-11-08T11:12:56Z | |
dc.date.available | 2023-11-08T11:12:56Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Ipp, A., Leuthner, M., Müller, D. I., Schlichting, S., & Singh, P. (2022). Studying the 3+1D structure of the Glasma using the weak field approximation. <i>EPJ Web of Conferences</i>, <i>274</i>, 05017. https://doi.org/10.1051/epjconf/202227405017 | |
dc.identifier.other | CONVID_194296042 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/91819 | |
dc.description.abstract | We extend the weak field approximation for the Glasma beyond the boost-invariant approximation, which allows us to compute rapidity-dependent observables in the early stages of heavy-ion collisions. We show that in the limit of small fields, the weak field approximation agrees quantitatively with non-perturbative lattice simulations. Furthermore, we demonstrate that the rapidity profile of the transverse pressure is determined by longitudinal color correlations within the colliding nuclei. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | EDP Sciences | |
dc.relation.ispartof | XVth Quark Confinement and the Hadron Spectrum Conference (ConfXV) | |
dc.relation.ispartofseries | EPJ Web of Conferences | |
dc.rights | CC BY 4.0 | |
dc.title | Studying the 3+1D structure of the Glasma using the weak field approximation | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-202311087856 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2101-6275 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Authors, published by EDP Sciences. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | Quark Confinement and the Hadron Spectrum Conference | |
dc.relation.grantnumber | 321840 | |
dc.relation.grantnumber | 824093 | |
dc.relation.grantnumber | 824093 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/824093/EU//STRONG-2020 | |
dc.subject.yso | kvarkki-gluoniplasma | |
dc.subject.yso | ydinfysiikka | |
dc.subject.yso | hiukkasfysiikka | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38826 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14759 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15576 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1051/epjconf/202227405017 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | European Commission | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Euroopan komissio | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | RIA Research and Innovation Action, H2020 | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | RIA Research and Innovation Action, H2020 | fi |
jyx.fundinginformation | DM and ML are supported by the Austrian Science Fund FWF No. P34764. ML further acknowledges funding from the Doktoratskolleg Particles and Interactions (DK-PI, FWF doctoral program No. W-1252-N27). SS and PS are supported under the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the CRC-TR 211 ‘Strong-interaction matter under extreme conditions’ - project number: 315477589 TRR-211. PS is also supported by the Academy of Finland, project 321840 and under the European Union’s Horizon 2020 research and innovation programme by the STRONG-2020 project (grant agreement No 824093). The computations in this work were performed at the Paderborn Center for Parallel Computing (PC2) and the Vienna Scientific Cluster (VSC). | |
dc.type.okm | A4 | |