Forecasting from misspecified nonseasonal and seasonal time series processes
Authors
Date
1982Access restrictions
This material has a restricted access due to copyright reasons. It can be read at the workstation at Jyväskylä University Library reserved for the use of archival materials: https://kirjasto.jyu.fi/collections/archival-workstation.
Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Related items
Showing items with similar title or keywords.
-
The process by which perceived autonomy support predicts motivation, intention, and behavior for seasonal influenza prevention in Hong Kong older adults
Chung, Pak-Kwong; Zhang, Chun-Qing; Liu, Jing-Dong; Chan, Derwin King-Chung; Si, Gangyan; Hagger, Martin (BioMed Central Ltd., 2018)Background: This study examined the effectiveness of a theoretical framework that integrates self-determination theory (SDT) and the theory of planned behavior (TPB) in explaining the use of facemasks to prevent ... -
High-resolution spatiotemporal forecasting of the European crane migration
De Koning, K.; Nilsson, L.; Månsson, J.; Ovaskainen, O.; Kranstauber, B.; Arp, M.; Schakel, J.K. (Elsevier, 2024)In this paper we present three different models to forecast bird migration. They are species-specific individual-based models that operate on a high spatiotemporal resolution (kilometres, 15 min-hours), as an addition to ... -
In-season variation of skating load at different playing positions in male elite ice hockey : a single season longitudinal study
Reinikainen, Miika (2021)Aikaisemmat tutkimukset korkean intensiteetin joukkueurheilulajeista osoittavat, että pitkä kilpailukausi vaikuttaa monin tavoin negatiivisesti pelaajien fyysisiin ominaisuuksiin ja sitä kautta myös suorituskykyyn kauden ... -
Machine learning in macroeconomic forecasting
Nyholm, Sebastian (2022)Dataa on aina ollut saatavilla paljon taloudesta, mutta sen kaiken käyttäminen talouden ennustamisessa on ollut hankalaa. Perinteiset ennustamisen ja arvioinnin mallit eivät ole osoittautuneet olevan kovin tarkkoja ... -
KFAS: Exponential Family State Space Models in R
Helske, Jouni (Foundation for Open Access Statistics, 2017)State space modeling is an efficient and flexible method for statistical inference of a broad class of time series and other data. This paper describes the R package KFAS for state space modeling with the observations ...