Show simple item record

dc.contributor.authorTruttmann, Vera
dc.contributor.authorLoxha, Adea
dc.contributor.authorBanu, Rareş
dc.contributor.authorPittenauer, Ernst
dc.contributor.authorMalola, Sami
dc.contributor.authorMatus, María Francisca
dc.contributor.authorWang, Yuchen
dc.contributor.authorPloetz, Elizabeth A.
dc.contributor.authorRupprechter, Günther
dc.contributor.authorBürgi, Thomas
dc.contributor.authorHäkkinen, Hannu
dc.contributor.authorAikens, Christine
dc.contributor.authorBarrabés, Noelia
dc.date.accessioned2023-10-11T05:37:58Z
dc.date.available2023-10-11T05:37:58Z
dc.date.issued2023
dc.identifier.citationTruttmann, V., Loxha, A., Banu, R., Pittenauer, E., Malola, S., Matus, M. F., Wang, Y., Ploetz, E. A., Rupprechter, G., Bürgi, T., Häkkinen, H., Aikens, C., & Barrabés, N. (2023). Directing Intrinsic Chirality in Gold Nanoclusters : Preferential Formation of Stable Enantiopure Clusters in High Yield and Experimentally Unveiling the “Super” Chirality of Au144. <i>Acs Nano</i>, <i>17</i>(20), 20376-20386. <a href="https://doi.org/10.1021/acsnano.3c06568" target="_blank">https://doi.org/10.1021/acsnano.3c06568</a>
dc.identifier.otherCONVID_193386759
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/89694
dc.description.abstractChiral gold nanoclusters offer significant potential for exploring chirality at a fundamental level and for exploiting their applications in sensing and catalysis. However, their widespread use is impeded by low yields in synthesis, tedious separation procedures of their enantiomeric forms, and limited thermal stability. In this study, we investigated the direct synthesis of enantiopure chiral nanoclusters using the chiral ligand 2-MeBuSH in the fabrication of Au25, Au38, and Au144 nanoclusters. Notably, this approach leads to the unexpected formation of intrinsically chiral clusters with high yields for chiral Au38 and Au144 nanoclusters. Experimental evaluation of chiral activity by circular dichroism (CD) spectroscopy corroborates previous theoretical calculations, highlighting the stronger CD signal exhibited by Au144 compared to Au38 or Au25. Furthermore, the formation of a single enantiomeric form is experimentally confirmed by comparing it with intrinsically chiral Au38(2-PET)24 (2-PET: 2-phenylethanethiol) and is supported theoretically for both Au38 and Au144. Moreover, the prepared chiral clusters show stability against diastereoisomerization, up to temperatures of 80 °C. Thus, our findings not only demonstrate the selective preparation of enantiopure, intrinsically chiral, and highly stable thiolate-protected Au nanoclusters through careful ligand design but also support the predicted “super” chirality in the Au144 cluster, encompassing hierarchical chirality in ligands, staple configuration, and core structure.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.ispartofseriesAcs Nano
dc.rightsCC BY 4.0
dc.subject.otherkiraalisuus
dc.subject.otherchirality
dc.subject.othermetal nanoclusters
dc.subject.otherligand
dc.subject.othergold
dc.subject.otheryield
dc.subject.otherintrinsically chiral
dc.subject.otherdensity functional theory
dc.titleDirecting Intrinsic Chirality in Gold Nanoclusters : Preferential Formation of Stable Enantiopure Clusters in High Yield and Experimentally Unveiling the “Super” Chirality of Au144
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202310115742
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange20376-20386
dc.relation.issn1936-0851
dc.relation.numberinseries20
dc.relation.volume17
dc.type.versionpublishedVersion
dc.rights.copyright© The Authors. Published by American Chemical Society
dc.rights.accesslevelopenAccessfi
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysokulta
dc.subject.ysoligandit
dc.subject.ysonanohiukkaset
dc.subject.ysonanotieteet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p19016
jyx.subject.urihttp://www.yso.fi/onto/yso/p24741
jyx.subject.urihttp://www.yso.fi/onto/yso/p23451
jyx.subject.urihttp://www.yso.fi/onto/yso/p6228
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1021/acsnano.3c06568
jyx.fundinginformationOpen Access is funded by the Austrian Science Fund (FWF). CD spectroscopy was supported by an Innovative Project (RAKI-MINT) granted by TU Wien to Astrid R. Mach-Aigner. N.B. acknowledges support by the Austrian Science Fund (FWF) via grant Elise Richter (V831-N). N.B. and T.B. thank COST Action CA21101 COSY. V.T. thanks the Austrian Marshall Plan Foundation for financially supporting her stay at Kansas State University through a Marshall Plan Scholarship.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0