Näytä suppeat kuvailutiedot

dc.contributor.authordos Reis, Glaydson S.
dc.contributor.authorDotto, Guilherme L.
dc.contributor.authorVieillard, Julien
dc.contributor.authorOliveira, Marcos L. S.
dc.contributor.authorLütke, Sabrina F.
dc.contributor.authorGrimm, Alejandro
dc.contributor.authorSilva, Luis F. O.
dc.contributor.authorLima, Éder C.
dc.contributor.authorNaushad, Mu.
dc.contributor.authorLassi, Ulla
dc.date.accessioned2023-09-29T09:36:42Z
dc.date.available2023-09-29T09:36:42Z
dc.date.issued2023
dc.identifier.citationdos Reis, G. S., Dotto, G. L., Vieillard, J., Oliveira, M. L. S., Lütke, S. F., Grimm, A., Silva, L. F. O., Lima, É. C., Naushad, Mu., & Lassi, U. (2023). Nickel-Aluminium layered double hydroxide as an efficient adsorbent to selectively recover praseodymium and samarium from phosphogypsum leachate. <i>Journal of Alloys and Compounds</i>, <i>960</i>, Article 170530. <a href="https://doi.org/10.1016/j.jallcom.2023.170530" target="_blank">https://doi.org/10.1016/j.jallcom.2023.170530</a>
dc.identifier.otherCONVID_183240569
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/89322
dc.description.abstractThis study aimed to synthesize a green powdered layered double hydroxide (LDH) based on nickel-aluminum (Ni–Al-LDH) to evaluate its efficiency in the removal of rare earth elements (REEs), Praseodymium (Pr3+) and Samarium (Sm3+), from synthetic effluents and real leachate using phosphogypsum as a secondary source of REEs. Several characterization techniques were employed to evaluate the physicochemical properties of Ni-Al-LDH adsorbent, such as specific surface area and porosity, functional surface groups and phases, and point of zero charge. The characterization results indicated that Ni-Al-LDH exhibited a typical layered structure confirming the successful synthesis. The effect of key adsorption variables, such as pH, contact time, initial concentration, and temperature, on the REEs adsorption was extensively studied in single-factor experiments separately. The kinetic and equilibrium adsorption data agreeably fitted the Avrami and Sips models, respectively. The maximum adsorption capacities for Pr3+ and Sm3+ adsorption were 18.13 and 15.68 mg g-1 at 298 K, respectively. The thermodynamic parameters (ΔH0, ΔS0, ΔG0) indicated that the adsorption was spontaneous, favorable, and exothermic for both Pr3+ and Sm3+. The interactions between Pr3+ and Sm3+ onto Ni-Al-LDH suggest that multiple adsorption mechanisms are involved, such as ion exchange, precipitation, chelation, and pore filling. Finally, the Ni-Al-LDH could selectively recover REEs, specially Pr3+ and Sm3+, from the real phosphogypsum leachate. It has been demonstrated that Ni-Al-LDH is a promising adsorbent material that could be used as an adsorbent for the recovery of REEs from synthetic and real effluents.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesJournal of Alloys and Compounds
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherlayered double hydroxide
dc.subject.otherphosphogypsum leachate
dc.subject.otheradsorption
dc.subject.otherrecovery
dc.subject.otherrare earth elements
dc.titleNickel-Aluminium layered double hydroxide as an efficient adsorbent to selectively recover praseodymium and samarium from phosphogypsum leachate
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202309295337
dc.contributor.laitosKokkolan yliopistokeskus Chydeniusfi
dc.contributor.laitosKokkola University Consortium Chydeniusen
dc.contributor.oppiaineSoveltavan kemian yksikköfi
dc.contributor.oppiaineThe Unit of Applied Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0925-8388
dc.relation.volume960
dc.type.versionacceptedVersion
dc.rights.copyright© 2023 Elsevier B.V. All rights reserved.
dc.rights.accesslevelopenAccessfi
dc.subject.ysoteollisuusjätteet
dc.subject.ysovihreä kemia
dc.subject.ysoadsorptio
dc.subject.ysosynteettiset materiaalit
dc.subject.ysoharvinaiset maametallit
dc.subject.ysotalteenotto
dc.subject.ysokipsi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p5793
jyx.subject.urihttp://www.yso.fi/onto/yso/p12401
jyx.subject.urihttp://www.yso.fi/onto/yso/p13395
jyx.subject.urihttp://www.yso.fi/onto/yso/p12975
jyx.subject.urihttp://www.yso.fi/onto/yso/p15798
jyx.subject.urihttp://www.yso.fi/onto/yso/p11190
jyx.subject.urihttp://www.yso.fi/onto/yso/p15722
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.jallcom.2023.170530
jyx.fundinginformationDr. dos Reis thanks Bio4Energy— a Strategic Research Environment appointed by the Swedish government and the Swedish University of Agricultural Sciences, for the funding support. This work was funded by Brazilian National Council for Scientific and Technological Development/CNPq (Grants 405.982/2022-4, 303.992/2021-2, 303.612/2021-5, and 402.450/2021-3) and Coordination for the Improvement of Higher Education Personnel/CAPES (CAPES-PRINT Program). Dr. Alejandro Grimm acknowledges financial support from the Swedish Research Council FORMAS (2021-00877). The authors are also grateful to the Researchers Supporting Project number (RSP2023R8), King Saudi University, Riyadh, Saudi Arabia, for the financial support.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0