Näytä suppeat kuvailutiedot

dc.contributor.authorNau, Werner M.
dc.contributor.authorMoorthy, Suresh
dc.contributor.authorLambert, Hugues
dc.contributor.authorMohan, Neetha
dc.contributor.authorSchwarzlose, Thomas
dc.contributor.authorKalenius, Elina
dc.contributor.authorLee, Tung-Chun
dc.date.accessioned2023-09-29T06:14:45Z
dc.date.available2023-09-29T06:14:45Z
dc.date.issued2023
dc.identifier.citationNau, W. M., Moorthy, S., Lambert, H., Mohan, N., Schwarzlose, T., Kalenius, E., & Lee, T.-C. (2023). Noncovalent Modulation of Chemoselectivity in the Gas Phase Leads to a Switchover in Reaction Type from Heterolytic to Homolytic to Electrocyclic Cleavage. <i>Angewandte Chemie</i>, <i>62</i>(32), Article e202303491. <a href="https://doi.org/10.1002/anie.202303491" target="_blank">https://doi.org/10.1002/anie.202303491</a>
dc.identifier.otherCONVID_183167880
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/89309
dc.description.abstractIn the gas phase, thermal activation of supramolecular assemblies such as host-guest complexes leads commonly to noncovalent dissociation into the individual components. Chemical reactions, for example of encapsulated guest molecules, are only found in exceptional cases. As observed by mass spectrometry, when 1-amino-methyl-2,3-diazabicyclo[2.2.2]oct-2-ene (DBOA) is complexed by the macrocycle b-cyclodextrin, its protonated complex undergoes collision-induced dissociation into its components, the conventional reaction pathway. Inside the macrocyclic cavity of cucurbit[7]uril (CB7), a competitive chemical reaction of monoprotonated DBOA takes place upon thermal activation, namely a stepwise homolytic covalent bond cleavage with the elimination of N2, while the doubly protonated CB7•DBOA complex undergoes an inner-phase elimination of ethylene, a concerted, electrocyclic ring-opening reaction. These chemical reaction pathways stand in contrast to the gas-phase chemistry of uncomplexed monoprotonated DBOA, for which an elimination of NH3 predominates upon collision-induced activation, as a heterolytic bond cleavage reaction. The combined results, which can be rationalized in terms of organic-chemical reaction mechanisms and density-function theoretical calculations, demonstrate that chemical reactions in the gas phase can be steered chemoselectively through noncovalent interactions.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofseriesAngewandte Chemie
dc.rightsCC BY 4.0
dc.subject.othermass spectrometry
dc.subject.othercucurbiturils
dc.subject.otherreactivity modulation
dc.subject.othergas-phase chemistry
dc.subject.otherhost-guest complexes
dc.titleNoncovalent Modulation of Chemoselectivity in the Gas Phase Leads to a Switchover in Reaction Type from Heterolytic to Homolytic to Electrocyclic Cleavage
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202309295326
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineAnalyyttinen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineOrgaaninen kemiafi
dc.contributor.oppiaineAnalytical Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiaineOrganic Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1433-7851
dc.relation.numberinseries32
dc.relation.volume62
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
dc.rights.accesslevelopenAccessfi
dc.subject.ysomassaspektrometria
dc.subject.ysosupramolekulaarinen kemia
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p10755
jyx.subject.urihttp://www.yso.fi/onto/yso/p37759
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1002/anie.202303491
jyx.fundinginformationSM, NM, EK, and TCL are grateful to the Research Project Grant (RPG-2016-393) funded by the Leverhulme Trust. HL and TCL are grateful to the Studentship funded by the A*STAR-UCL Research Attachment Programme through the EPSRC M3S CDT (EP/L015862/1). The authors acknowledge the use of the UCL Myriad High Performance Computing Facility (Myriad@UCL), and associated support services, in the completion of this work. The authors are grateful to the UK Materials and Molecular Modelling Hub for computational resources, which are partially funded by EPSRC (Grant EP/P020194/1). WMN thanks the DFG for grant NA-686/8 within the priority program SPP 1807 “Control of London Dispersion Interactions in Molecular Chemistry”. EK acknowledges the University of Jyväskylä for access to instrumentation.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0