Näytä suppeat kuvailutiedot

dc.contributor.authorKlemetti, Antti
dc.contributor.authorRaatikainen, Mikko
dc.contributor.authorMyllyaho, Lalli
dc.contributor.authorMikkonen, Tommi
dc.contributor.authorNurminen, Jukka K.
dc.date.accessioned2023-09-19T10:55:56Z
dc.date.available2023-09-19T10:55:56Z
dc.date.issued2023
dc.identifier.citationKlemetti, A., Raatikainen, M., Myllyaho, L., Mikkonen, T., & Nurminen, J. K. (2023). Systematic Literature Review on Cost-efficient Deep Learning. <i>IEEE Access</i>, <i>11</i>, 90158-90180. <a href="https://doi.org/10.1109/access.2023.3275431" target="_blank">https://doi.org/10.1109/access.2023.3275431</a>
dc.identifier.otherCONVID_183198495
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/89174
dc.description.abstractCloud computing and deep learning, the recent big trends in the software industry, have enabled small companies to scale their business up rapidly. However, this growth is not without a cost – deep learning models are related to the heaviest workloads in cloud data centers. When the business grows, the monetary cost of deep learning in the cloud grows fast as well. Deep learning practitioners should be prepared and equipped to limit the growing cost. We performed a systematic literature review on the methods to control the monetary cost of deep learning. Our library search resulted in 16066 papers from three article databases, IEEE Xplore, ACM Digital Library, and Scopus. We narrowed them down to 112 papers that we categorized and summarized.We found that: 1) Optimizing inference has raised more interest than optimizing training. Popular deep learning libraries already support some of the inference optimization methods such as quantization, pruning, and teacher-student. 2) The research has been centered around image inputs, and there seems to be a research gap for other types of inputs. 3) The research has been hardwareoriented, and the most typical approach to control the cost of deep learning is based on algorithm-hardware co-design. 4) Offloading some of the processing to client devices is gaining interest and has the potential to reduce the monetary cost of deep learning.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofseriesIEEE Access
dc.rightsCC BY 4.0
dc.subject.othercosts
dc.subject.othercloud computing
dc.subject.otherdeep learning
dc.subject.othertraining
dc.subject.otherneurons
dc.subject.othercomputational modeling
dc.subject.otherbusiness
dc.titleSystematic Literature Review on Cost-efficient Deep Learning
dc.typereview article
dc.identifier.urnURN:NBN:fi:jyu-202309195190
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bc
dc.description.reviewstatuspeerReviewed
dc.format.pagerange90158-90180
dc.relation.issn2169-3536
dc.relation.volume11
dc.type.versionpublishedVersion
dc.rights.copyright© Authors, 2023
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoharjoittelu
dc.subject.ysoliiketoiminta
dc.subject.ysoohjelmistoteollisuus
dc.subject.ysosyväoppiminen
dc.subject.ysokustannukset
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p26412
jyx.subject.urihttp://www.yso.fi/onto/yso/p2439
jyx.subject.urihttp://www.yso.fi/onto/yso/p14764
jyx.subject.urihttp://www.yso.fi/onto/yso/p39324
jyx.subject.urihttp://www.yso.fi/onto/yso/p7517
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1109/access.2023.3275431
jyx.fundinginformationThis work was supported by the IML4E project of ITEA4 funded by Business Finland.
dc.type.okmA2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0