CO2 emission based GDP prediction using intuitionistic fuzzy transfer learning
Kumar, S., Shukla, A. K., Muhuri, P. K., & Danish Lohani, Q. M. (2023). CO2 emission based GDP prediction using intuitionistic fuzzy transfer learning. Ecological Informatics, 77, Article 102206. https://doi.org/10.1016/j.ecoinf.2023.102206
Julkaistu sarjassa
Ecological InformaticsPäivämäärä
2023Oppiaine
Computing, Information Technology and MathematicsLaskennallinen tiedeComputing, Information Technology and MathematicsComputational ScienceTekijänoikeudet
© 2023 The Authors. Published by Elsevier B.V.
The industrialization has been the primary cause of the economic boom in almost all countries. However, this happened at the cost of the environment, as industrialization also caused carbon emissions to increase exponentially. According to the established literature, Gross Domestic Product (GDP) is related to carbon emissions (CO2) which could be optimally employed to precisely estimate a country's GDP. However, the scarcity of data is a significant bottleneck that could be handled using transfer learning (TL) which uses previously learned information to resolve new tasks, more specifically, related tasks. Notably, TL is highly vulnerable to performance degradation due to the deficiency of suitable information and hesitancy in decision-making. Therefore, this paper proposes ‘Intuitionistic Fuzzy Transfer Learning (IFTL)’, which is trained to use CO2 emission data of developed nations and is tested for its prediction of GDP in a developing nation. IFTL exploits the concepts of intuitionistic fuzzy sets (IFSs) and a newly introduced function called the modified Hausdorff distance function. The proposed IFTL is investigated to demonstrate its actual capabilities for TL in modeling hesitancy. To further emphasize the role of hesitancy modelled with IFSs, we propose an ordinary fuzzy set (FS) based transfer learning. The prediction accuracy of the IFTL is further compared with widely used machine learning approaches, extreme learning machines, support vector regression, and generalized regression neural networks. It is observed that IFTL capably ensured significant improvements in the prediction accuracy over other existing approaches whenever training and testing data have huge data distribution differences. Moreover, the proposed IFTL is deterministic in nature and presents a novel way for mathematically computing the intuitionistic hesitation degree.
...
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
1574-9541Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/184813505
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
The first author gratefully acknowledges the financial assistance received from the Department of Science and Technology, Government of India, in the form of INSPIRE research fellowship.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Species distributions models may predict accurately future distributions but poorly how distributions change : A critical perspective on model validation
Piirainen, Sirke; Lehikoinen, Aleksi; Husby, Magne; Kålås, John Atle; Lindström, Åke; Ovaskainen, Otso (Wiley, 2023)Aim Species distribution models (SDMs) are widely used to make predictions on how species distributions may change as a response to climatic change. To assess the reliability of those predictions, they need to be critically ... -
Effect of variable selection strategy on the predictive models for adverse pregnancy outcomes of pre-eclampsia : A retrospective study
Zheng, Dongying; Hao, Xinyu; Khan, Muhanmmad; Kang, Fuli; Li, Fan; Hämäläinen, Timo; Wang, Lixia (Scholar Media Publishing Company, 2024)Objectives: The improvement of prediction for adverse pregnancy outcomes is quite essential to the women suffering from pre-eclampsia, while the collection of predictive indicators is the prerequisite. The traditional ... -
Process‐Informed Neural Networks : A Hybrid Modelling Approach to Improve Predictive Performance and Inference of Neural Networks in Ecology and Beyond
Wesselkamp, Marieke; Moser, Niklas; Kalweit, Maria; Boedecker, Joschka; Dormann, Carsten F. (Wiley, 2024)Despite deep learning being state of the art for data-driven model predictions, its application in ecology is currently subject to two important constraints: (i) deep-learning methods are powerful in data-rich regimes, but ... -
Recent advances in machine learning for maximal oxygen uptake (VO2 max) prediction : A review
Ashfaq, Atiqa; Cronin, Neil; Müller, Philipp (Elsevier, 2022)Maximal oxygen uptake ( max) is the maximum amount of oxygen attainable by a person during exercise. max is used in different domains including sports and medical sciences and is usually measured during an incremental ... -
Predicting Children's Myopia Risk : A Monte Carlo Approach to Compare the Performance of Machine Learning Models
Artiemjew, Piotr; Cybulski, Radosław; Emamian, Mohammad; Grzybowski, Andrzej; Jankowski, Andrzej; Lanca, Carla; Mehravaran, Shiva; Młyński, Marcin; Morawski, Cezary; Nordhausen, Klaus; Pärssinen, Olavi; Ropiak, Krzysztof (SCITEPRESS Science and Technology Publications, 2024)This study presents the initial results of the Myopia Risk Calculator (MRC) Consortium, introducing an innovative approach to predict myopia risk by using trustworthy machine-learning models. The dataset included approximately ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.