Näytä suppeat kuvailutiedot

dc.contributor.authorLi, Meijian
dc.contributor.authorLappi, Tuomas
dc.contributor.authorZhao, Xingbo
dc.contributor.authorSalgado, Carlos A.
dc.date.accessioned2023-09-14T10:15:50Z
dc.date.available2023-09-14T10:15:50Z
dc.date.issued2023
dc.identifier.citationLi, M., Lappi, T., Zhao, X., & Salgado, C. A. (2023). Momentum broadening of an in-medium jet evolution using a light-front Hamiltonian approach. <i>Physical Review D</i>, <i>108</i>(3), Article 036016. <a href="https://doi.org/10.1103/PhysRevD.108.036016" target="_blank">https://doi.org/10.1103/PhysRevD.108.036016</a>
dc.identifier.otherCONVID_184702344
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/89097
dc.description.abstractFollowing the nonperturbative light-front Hamiltonian formalism developed in our preceding work [Li. et al. Phys. Rev. D 104, 056014 (2021)], we investigate the momentum broadening of a quark jet inside a SU(3) colored medium. We perform the numerical simulation of the real-time jet evolution in Fock spaces of a single quark, a quark-gluon state, and coupled quark- and quark-gluon states at various jet momenta p+ and medium densities. With the obtained jet light-front wave function, we extract the jet transverse momentum distribution, the quenching parameter, and the gluon emission rate. We analyze the dependence of momentum broadening on p+, medium density, color configuration, spatial correlation, and medium-induced gluon emission. For comparison, we also derive analytically the expectation value of the transverse momentum of a quark-gluon state in any color configuration and in an arbitrary spatial distribution in the eikonal limit. This work can help understand jet momentum broadening in the noneikonal regime.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Physical Society (APS)
dc.relation.ispartofseriesPhysical Review D
dc.rightsCC BY 4.0
dc.titleMomentum broadening of an in-medium jet evolution using a light-front Hamiltonian approach
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202309145118
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2470-0010
dc.relation.numberinseries3
dc.relation.volume108
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 American Physical Society
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber346324
dc.relation.grantnumber835105
dc.relation.grantnumber835105
dc.relation.grantnumber824093
dc.relation.grantnumber824093
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/835105/EU//YoctoLHC
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/824093/EU//STRONG-2020
dc.subject.ysohiukkasfysiikka
dc.subject.ysokvarkki-gluoniplasma
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p15576
jyx.subject.urihttp://www.yso.fi/onto/yso/p38826
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1103/PhysRevD.108.036016
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuropean Commissionen
dc.relation.funderEuropean Commissionen
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramCentre of Excellence, AoFen
jyx.fundingprogramERC Advanced Granten
jyx.fundingprogramRIA Research and Innovation Action, H2020en
jyx.fundingprogramHuippuyksikkörahoitus, SAfi
jyx.fundingprogramERC Advanced Grantfi
jyx.fundingprogramRIA Research and Innovation Action, H2020fi
jyx.fundinginformationWe are very grateful to Guillaume Beuf, Fabio Dominguez, Miguel A. Escobedo, Xabier Feal, Sigtryggur Hauksson, Cyrille Marquet, Wenyang Qian, Andrecia Ramnath, Andrey Sadofyev, Konrad Tywoniuk, James P. Vary, Xin-Nian Wang, and Bin Wu for helpful and valuable discussions. X. Z. is supported by new faculty startup funding by the Institute of Modern Physics, Chinese Academy of Sciences, by Key Research Program of Frontier Sciences, Chinese Academy of Sciences, Grant No. ZDBS-LY-7020, by the Natural Science Foundation of Gansu Province, China, Grant No. 20JR10RA067, by the Foundation for Key Talents of Gansu Province, by the Central Funds Guiding the Local Science and Technology Development of Gansu Province, Grant No. 22ZY1QA006, by international partnership program of the Chinese Academy of Sciences, Grant No. 016GJHZ2022103FN and by the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB34000000. M. L. and C. S. are supported by Xunta de Galicia (Centro singular de Investigacion de Galicia accreditation 2019-2022), European Union ERDF, the “Maria de Maeztu” Units of Excellence program under project CEX2020-001035-M, the Spanish Research State Agency under Project No. PID2020–119632 GB-I00, and European Research Council under Project No. ERC-2018-ADG-835105 YoctoLHC. T. L. is supported by the Academy of Finland, the Centre of Excellence in Quark Matter (Project No. 346324) and Project No. 321840. This work was also supported under the European Union’s Horizon 2020 research and innovation by the STRONG-2020 project (Grant Agreement No. 824093). The content of this article does not reflect the official opinion of the European Union and responsibility for the information and views expressed therein lies entirely with the authors.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0