Environmental responses of fruiting fungal communities are phylogenetically structured
Koskinen, J., Abrego, N., Vesterinen, E., Roslin, T., & Nyman, T. (2023). Environmental responses of fruiting fungal communities are phylogenetically structured. Ecography, Early View. https://doi.org/10.1111/ecog.06333
Published in
EcographyDate
2023Copyright
© 2023 The Authors. Ecography published by John Wiley & Sons Ltd on behalf of Nordic Society
Oikos
Through their ephemeral reproductive structures (fruiting bodies), ectomycorrhizal forest soil fungi provide a resource for a plethora of organisms. Thus, resolving what biotic and abiotic factors determine the occurrence and abundance of fruiting bodies is fundamental for understanding the dynamics of forest trophic networks. While the influence of abiotic factors such as moisture and temperature on fungal fruiting are relatively well established, little is known about how these processes interact with the evolutionary history of fungal species to determine when, where, and in which abundance fungal fruiting bodies will emerge. A specific knowledge gap relates to whether species' responses to their environment are phylogenetically structured. Here, we ask whether related fungal taxa respond similarly to climatic factors and forest habitat characteristics, and whether such correlated responses will affect the assembly of fungal fruiting communities. To resolve these questions, we fitted joint species distribution models combining data on the species composition and abundance of fungal fruiting bodies, environmental variation, and phylogenetic relationships among fungal taxa. Our results show that both site-level forest characteristics (dominant tree species and forest age) and climatic factors related to phenology (effective heat sum) greatly influence the occurrence and abundance of fruiting bodies. More importantly, while different fungal species responded unequally to their shared environment, there was a strong phylogenetic signal in their responses, so that related fungal species tended to fruit under similar environmental conditions. Thus, not only are fruiting bodies short-lived and patchily distributed, but the availability of similar resources will be further aggregated in time and space. These strong constraints on resource availability for fungus-associated taxa highlight the potential of fungus-based networks as a model system for studies on the ecology and evolution of resource–consumer relations in ephemeral systems of high spatiotemporal patchiness.
...


Publisher
Wiley-BlackwellISSN Search the Publication Forum
0906-7590Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/184209124
Metadata
Show full item recordCollections
Related funder(s)
Academy of FinlandFunding program(s)
Academy Research Fellow, AoF
Additional information about funding
JK was funded by Bätty Väänäsen rahasto, Emil Aaltosen säätiö, Olvi-säätiö and Oskar Öflunds stiftelse. JK was funded with junior researcher position by University of Eastern Finland. JK was provided with facilities and support from University of Helsinki. NA and TN received funding from Academy of Finland (grant no. 342374 and 294466, respectively).License
Related items
Showing items with similar title or keywords.
-
Host filtering, not competitive exclusion, may be the main driver of arbuscular mycorrhizal fungal community assembly under high phosphorus
Frew, Adam; Heuck, Meike Katharina; Aguilar‐Trigueros, Carlos A. (Wiley, 2023)A major goal in ecology is understanding the factors which determine the diversity and distribution of organisms. The outcome of the symbiotic relationship between plants and arbuscular mycorrhizal (AM) fungi is strongly ... -
Traits and phylogenies modulate the environmental responses of wood‐inhabiting fungal communities across spatial scales
Abrego, Nerea; Bässler, Claus; Christensen, Morten; Heilmann‐Clausen, Jacob (Wiley, 2022)Identifying the spatial scales at which community assembly processes operate is fundamental for gaining a mechanistic understanding of the drivers shaping ecological communities. In this study, we examined whether and how ... -
Phylogenetic diversity and affiliation of tropical African ectomycorrhizal fungi
Houdanon, R. D.; Furneaux, B.; Yorou, N. S.; Ryberg, M. (Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering; Mushroom Research Foundation, 2022)Ectomycorrhizal fungi form a mutualistic symbiosis with plant roots, and are key for nutrient cycling in many ecosystems. Here we study the ectomycorrhizal fungal communities in the Oueme Superieur reserve forest in Benin ... -
Wood-inhabiting fungal communities : Opportunities for integration of empirical and theoretical community ecology
Abrego, Nerea (Elsevier, 2022)The interest in studying wood-inhabiting fungal communities has grown in recent years. This interest has mainly been motivated by the important roles of wood-inhabiting fungi in ecosystem functioning (e.g. nutrient cycling) ... -
Spatial and temporal variation in denitrification and in the denitrifier community in a boreal lake
Rissanen, Antti; Tiirola, Marja; Ojala, Anne (Inter Research, 2011)We investigated the spatial and temporal variation in denitrification rates (isotopepairing technique, IPT) and in the denitrifier community (examination of gene nirK by denaturinggradient gel electrophoresis [DGGE] of ...